

Recent experimental studies for unbound oxygen isotopes

Y. Kondo (Tokyo Institute of Technology)

10m

RIBF seminar, Apr. 19, RIKEN

5m

On

NN NN

Where is neutron drip line?

Pursuing Excellence

Neutron drip line : One of the fundamental properties of atomic nuclei

Before 2000: drip line of oxygen was not clear \rightarrow Several experiments were performed to search for bound ²⁶O and ²⁸O

ΤΟΚΥΟ ΤΙΕΓΗ Search for bound ²⁶O and ²⁸O Pursuing Excellence

3/37

Neutron drip line anomaly (oxygen anomaly)

What is the origin of the "oxygen anomaly"?

TOKY TECH Pursuing Excellence Three nucleon force and binding energies of oxygen isotopes

T. Otsuka et al., PRL105, 032501 (2010)

G. Hagen et al. PRL 108, 242501 (2012)

CC method with int. from chiral EFT (includes effects of <u>continuum and 3NF</u>)

3NF plays an important role in binding Mass of oxygen isotopes \rightarrow good test

Unbound oxygen isotopes

- Unbound oxygen isotopes are related to ...
 - Mechanism of drip line anomaly
 - Knowledge of 3NF
 - Shell structure at the south of the Island of Inversion
 - 2n radioactivity in ²⁶O?
 - 2n correlation in ²⁶O?

Shell Structure at South of Island of Inversion

G. Christian et al., PRC85, 034327, (2012)

 \rightarrow ²⁸F is boundary of Island of Inversion

2n radioactivity of ²⁶O? Pursuing Excellence

ΤΟΚΥΟ ΤΕΓΗ

ECH 2n correlation in ²⁶O? Pursuing Excellence 2.5×10⁻⁵ 180 160 2.0×10⁻⁵ 140 120 912 (deg) 1.5×10⁻⁵ 100

1.0×10⁻⁵

5.0×10⁻⁶

80

60 40

20

3-body model calculation

- K. Hagino et al., PRC89, 014331 (2014)
- K. Hagino et al., PRC93, 034330 (2016)

Spatial 2n correlation in ²⁶O \rightarrow back-to-back 2n emission

Mass measurement of

unbound oxygen isotopes

Mass measurements lead to ...

O TECH

Pursuing Excellence

- Mechanism of drip line anomaly
- Knowledge of 3NF
- Shell structure at the south of the Island of Inversion
- 2n radioactivity in ²⁶O?
- 2n correlation in ²⁶O?

Pursuing Excellence Invariant mass method

One-nucleon removal reaction from neutron-rich nucleus

One-proton removal reaction

- Higher N/Z nucleus is produced
- Ground state is mainly populated

One-neutron removal reaction

- Require neutron-rich beam
- Populate neutron-hole state (ground and excited states)
- Momentum distribution
 - Orbital angular momentum
- Cross section
 - Spectroscopic factor

One-nucleon removal reaction from neutron-rich nucleus

One-proton removal reaction

 Higher N/Z nucleus is produced

Pursuing Excellence

ΤΟΚΥΟ

 Ground state is mainly populated

One-nucleon removal reaction Pursuing Excellence from neutron-rich nucleus

FL

One-neutron removal reaction

- Require neutron-rich beam
- Populate neutron-hole state (ground and excited states)
- Momentum distribution
 - Orbital angular momentum
- Cross section

Pursuing Excellence Experiment @ RIBF

BigRIPS

Selection/identification of secondary beam^{15/37}

<u>Superconducting</u> <u>A</u>nalyzer for <u>MU</u>lti-particle from <u>RA</u>dio<u>I</u>sotope Beams

SAMURAI Day-one campaign

First experimental campaign with SAMURAI for physics programs

ΤΟΚΥΟ ΤΙΕΓΗ

Pursuing Excellence

- 1. Study of unbound nuclei ²⁵O and ²⁶O (SAMURAIO2, Y. Kondo)
- 2. Coulomb breakup of ²²C and ¹⁹B (SAMURAI03, T. Nakamura)
- 3. Study of unbound states of ²²C, ²¹C, ¹⁹B, ¹⁸B (SAMURAI04, N. A. Orr/J. Gibelin)

Tokyo Institute of Technology: Y.Kondo, T.Nakamura, N.Kobayashi, R.Tanaka, R.Minakata, S.Ogoshi, S.Nishi, D.Kanno, T.Nakashima, J. Tsubota, A. Saito LPC CAEN: N.A.Orr, J.Gibelin, F.Delaunay, F.M.Marques, N.L.Achouri, S.Leblond Tohoku University : T.Koabayshi, K.Takahashi, K.Muto RIKEN: K.Yoneda, T.Motobayashi, H.Otsu, T.Isobe, H.Baba, H.Sato, Y.Shimizu, J.Lee, P.Doornenbal, S.Takeuchi, N.Inabe, N.Fukuda, D.Kameda, H.Suzuki, H.Takeda, T.Kubo Seoul National University: Y.Satou, S.Kim, J.W.Hwang Kyoto University : T.Murakami, N.Nakatsuka GSI : Y.Togano Univ. of York: A.G.Tuff **GANIL:** A.Navin Technische Universit at Darmstadt: T.Aumann Rikkyo Univeristy: D.Murai Universit e Paris-Sud, IN2P3-CNRS: M.Vandebrouck

Particle identification @ SAMURAI

19/37

Another decay channel ($^{25}O \rightarrow ^{23}O+2n$) can be studied

Wall-1 Wall-2

Crosstalk ... multiple hits caused by 1n

- should be eliminated
- Same wall event \rightarrow position & timing information
 - 2 hits are regarded as 1n if positions & timing are close
 - lose efficiency for small E_{rel}
- Different wall event \rightarrow velocity information
 - event is regarded as crosstalk if $\beta_{01} > \beta_{12}$
 - because crosstalk neutron must be slow
 - can measure up to E_{rel}~0

Different Wall event

hit detector

Pursuing Excellence Crosstalk analysis (example)

⁷Li(p,n)⁷Be(g.s.+0.43MeV) @ 200MeV

-2

 β_{12}

-4

Different Wall event

• T. Nakamura, Y. Kondo, NIMB in press, arXiv:1512.08380

2⁺ excited state

Observed for the first time 1.28^{+0.11}-0.08 MeV

• Not consistent with lifetime meas. and 3body model $- E_T = 18 \text{keV}$ (present work) $\rightarrow T_{1/2} = 10^{-15} \sim 10^{-17} \text{sec}$? (based on 3 body model)

Pursuing Excellence Systematics of 2⁺ energy

- N=16 shell closure is confirmed
- USDB cannot describe 2⁺ energy at ²⁶O
 →effect of pf shell? and/or continiuum?

<u>3NF, pf shell, 2n correlation, continuum are important key words</u>

- Invariant mass spectroscopy of ²⁵O and ²⁶O
 - ²⁵0
 - Improved statistics \rightarrow possibility of 2n decay channel
 - ²⁶O
 - First determination of the finite g.s. energy (not upper limit)
 - Much shorter lifetime than measured? (model dependent)
 - First observation of 2+ state
 - pf-shell, continuum, 2n correlation, 3NF are key effects

PRL 116, 102503 (2016)

PHYSICAL REVIEW LETTERS

week ending 11 MARCH 2016

Nucleus ²⁶O: A Barely Unbound System beyond the Drip Line

Y. Kondo,¹ T. Nakamura,¹ R. Tanaka,¹ R. Minakata,¹ S. Ogoshi,¹ N. A. Orr,² N. L. Achouri,² T. Aumann,^{3,4} H. Baba,⁵ F. Delaunay,² P. Doornenbal,⁵ N. Fukuda,⁵ J. Gibelin,² J. W. Hwang,⁶ N. Inabe,⁵ T. Isobe,⁵ D. Kameda,⁵ D. Kanno,¹ S. Kim,⁶ N. Kobayashi,¹ T. Kobayashi,⁷ T. Kubo,⁵ S. Leblond,² J. Lee,⁵ F. M. Marqués,² T. Motobayashi,⁵ D. Murai,⁸ T. Murakami,⁹ K. Muto,⁷ T. Nakashima,¹ N. Nakatsuka,⁹ A. Navin,¹⁰ S. Nishi,¹ H. Otsu,⁵ H. Sato,⁵ Y. Satou,⁶ Y. Shimizu,⁵ H. Suzuki,⁵ K. Takahashi,⁷ H. Takeda,⁵ S. Takeuchi,⁵ Y. Togano,^{4,1} A. G. Tuff,¹¹ M. Vandebrouck,¹² and K. Yoneda⁵ ¹Department of Physics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan ²LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, F-14050 Caen, France ³Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany ⁴ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany ⁵RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan ⁶Department of Physics and Astronomy, Seoul National University, 599 Gwanak, Seoul 151-742, Republic of Korea ⁷Department of Physics, Tohoku University, Miyagi 980-8578, Japan ⁸Departiment of Physics, Rikkvo University, Toshima, Tokyo 171-8501, Japan ⁹Department of Physics, Kyoto University, Kyoto 606-8502, Japan ¹⁰Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen, France ¹¹Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom ¹²Institut de Physique Nucléaire, Université Paris-Sud, IN2P3-CNRS, Université de Paris Sud, F-91406 Orsay, France (Received 27 August 2015; published 9 March 2016)

The unbound nucleus ²⁶O has been investigated using invariant-mass spectroscopy following one-proton removal reaction from a ²⁷F beam at 201 MeV/nucleon. The decay products, ²⁴O and two neutrons, were detected in coincidence using the newly commissioned SAMURAI spectrometer at the RIKEN Radioactive Isotope Beam Factory. The ²⁶O ground-state resonance was found to lie only $18 \pm 3(\text{stat}) \pm 4(\text{syst})$ keV above threshold. In addition, a higher lying level, which is most likely the first 2⁺ state, was observed for the first time at $1.28^{+0.11}_{-0.08}$ MeV above threshold. Comparison with theoretical predictions suggests that three nucleon forces.

Mass measurement of unbound oxygen isotopes

\blacksquare First step : ²⁵O, ²⁶O \rightarrow Completed

TECH

Pursuing Excellence

□ Second step: ²⁷O, ²⁸O → Experiment in Nov-Dec, 2015

Excited states of N=20 nuclei

• Is ²⁸O doubly magic?

ΓΟΚ

ECH

Pursuing Excellence

Excited states of N=19 nuclei

• Single-hole state \rightarrow shell structure

ECH

Pursuing Excellence

Pursuing Excellence How to study ²⁷O and ²⁸O?

• ²⁸O: One-proton removal reaction of ²⁹F \vec{n}

- ²⁷O: two-proton removal reaction of ²⁹Ne
 - ²⁸F is unbound
 - ²⁸F can also be studied with the same setup

3 or 4 neutrons have to be detected

²⁸O measurement (November-December 2015)

TOKYDTECH Pursuing Excellence MINOS & DALI2

Pursuing Excellence NeuLAND is now at RIBF

 NeuLAND (400 detectors) arrived at RIKEN January, 2015

TOKYO TECH Pursuing Excellence SAMURAI21 collaboration

Y.Kondo, T.Nakamura, N.L.Achouri, H.Al Falou, L.Atar, T.Aumann, H.Baba, K.Boretzky, C.Caesar, D.Calvet, H.Chae, N.Chiga, A.Corsi, H.L.Crawford, F.Delaunay, A.Delbart, Q.Deshaves, Zs.Dombrádi, C.Douma, Z.Elekes, P.Fallon, I.Gašparić, J.-M.Gheller, J.Gibelin, A.Gillibert, M.N.Harakeh, A.Hirayama, C.R.Hoffman, M.Holl, A.Horvat, Á.Horváth, J.W.Hwang, T.Isobe, J.Kahlbow, N.Kalantar-Nayestanaki, S.Kawase, S.Kim, K.Kisamori, T.Kobayashi, D.Körper, S.Koyama, I.Kuti, V.Lapoux, S.Lindberg, F.M.Margués, S.Masuoka, J.Mayer, K.Miki, T.Murakami, M.A.Najafi, K.Nakano, N.Nakatsuka, T.Nilsson, A.Obertelli, F.de Oliveira Santos, N.A.Orr, H.Otsu, T.Ozaki, V.Panin, S.Paschalis, A.Revel, D.Rossi, A.T.Saito, T.Saito, M.Sasano, H.Sato, Y.Satou, H.Scheit, F.Schindler, P.Schrock, M.Shikata, Y.Shimizu, H.Simon, D.Sohler, O.Sorlin, L.Stuhl, S.Takeuchi, M.Tanaka, M.Thoennessen, H.Törngvist, Y.Togano, T.Tomai, J.Tscheuschner, J.Tsubota, T.Uesaka, H.Wang, Z.Yang, K.Yoneda

Tokyo Tech, Argonne, ATOMKI, CEA Saclay, Chalmers, CNS, Cologne, Eotvos, GANIL, GSI, IBS, KVI-CART, Kyoto Univ., Kyushu Univ., LBNL, Lebanese-French University of Technology and Applied Science, LPC-CAEN, MSU, Osaka Univ., RIKEN, Ruđer Bošković Institute, SNU, Tohoku Univ., TU Darmstadt, Univ. of Tokyo

88 Participants25 Institutes

High intense & stable ²⁹F beam! Data analysis is now going on...

- Invariant mass spectroscopy of ²⁵O, ²⁶O
 - 2n radioactivity of ²⁶O is not likely? (model dependent)
 - First observation of 2⁺ state of ²⁶O

 \rightarrow 3NF, pf shell, continuum are key words

- Results have been published in PRL116, 102503 (2016)
- Invariant mass spectroscopy of ²⁷O, ²⁸O
 - Successfully done in Nov-Dev, 2015
 - High intense & stable beam
 - Large collaboration (88 participants, 25 Institutes)
 - Analysis is now going on...
 - ²⁸F will also be studied (²⁹F -1n, ²⁹Ne -1p, ...)