Spallation reaction study for long-lived fission products in nuclear waste: Cross section measurement for <sup>137</sup>Cs and <sup>90</sup>Sr on proton and deuteron

### He Wang

#### **RIKEN Nishina Center**

RIBF seminar, RIBF hall, May 10, 2016

### Content

#### Motivation

- Experiment details
- Results and discussion
- Summary and perspective

### Motivation



#### High-level radioactive waste

- Long-lived fission products e.g. <sup>137</sup>Cs, <sup>90</sup>Sr, <sup>107</sup>Pd, <sup>93</sup>Zr...
- Minor Actinide e.g. <sup>241,243</sup>Am, <sup>237</sup>Np...

| Nuclide | Half-life<br>(year)  | Mass<br>(per 1tHM) |
|---------|----------------------|--------------------|
| Se-79   | 0.3x10 <sup>6</sup>  | 6g                 |
| Sr-90   | 28.8                 | 0.6kg              |
| Zr-93   | 1.53x10 <sup>6</sup> | 1kg                |
| Tc-99   | 0.21x10 <sup>6</sup> | 1kg                |
| Pd-107  | 6.5x10 <sup>6</sup>  | 0.3kg              |
| Sn-126  | 0.23x10 <sup>6</sup> | 30g                |
| I-129   | 15.7x10 <sup>6</sup> | 0.2kg              |
| Cs-135  | 2.3x10 <sup>6</sup>  | 0.5kg              |
| Cs-137  | 30.1                 | 1.5kg              |

Oigawa, CNS summer school, 2016

## Partitioning and transmutation (P&T)



Partitioning

- -- MA
- -- LLFP
  - -- Heat generator (Sr, Cs)
  - -- Rare metal (Pd)

Transmutation High-level radioactive waste → stable/short-lived isotopes



To minimize the long-term dose

### Nuclear Transmutation

**Transmutation in Alchemy** 

Philosopher's stoneMetal into Gold

Natural nuclear transmutation Artificial nuclear transmutation  $\gg \alpha$ -decay,  $\beta$ -decay  $\gg$  Reactions in reactor

One chemical element/isotope into another

### Possible reaction for the LLFP transmutation

 $(n,\gamma)$ : Neutron capture reaction (n,2n): Neutron knockout reaction



Neutron number N

Proton number Z

## Possible reaction for the LLFP transmutation

(*n*,γ): limited study (*n*,2*n*): no data

Proton number Z



Neutron number N

Insufficient reaction study for LLFP

### Possible reaction for the LLFP transmutation

Proton, deuteron induced reaction  $p/d+^{137}Cs \rightarrow$ 

Proton number Z



Neutron number N

# Reaction study for LLFP at RIBF

- Cross section measurements
- Inverse kinematics
- ➢ Proton and deuteron → information on neutron -- Difficulty to make neutron target
- Different reaction energy
  - -- 200 MeV/u as starting point



### **Experimental setup**

<sup>137</sup>Cs and <sup>90</sup>Sr beams production

Beam energy: 185MeV/u



### Particle identification for <sup>137</sup>Cs

N=82 isotones

N



 $^{52}$   $^{2.25}$   $^{2.3}$   $^{2.35}$   $^{2.4}$   $^{2.45}$   $^{2.5}$   $^{2.5}$   $^{2.5}$   $^{2.6}$ Mass-to-charge ratio A/QA/Q resolution=3.43 x 10<sup>-3</sup> (FWHM) Z resolution=0.55 (FWHM)



### Particle identification for <sup>90</sup>Sr



| Zr91                     | Zr <mark>92</mark>                      | Zr93                          |
|--------------------------|-----------------------------------------|-------------------------------|
| 5/2+                     | 0+                                      | 1.33E+0 y<br>5/2+             |
| 11.22                    | 17 <mark>1</mark> 5                     | β-                            |
| Y90<br>64.00 h<br>2-     | Y91<br>58.:1 d<br>1/2-<br>*             | Y92<br>3.54 h<br>2-           |
| β-                       |                                         | β-                            |
| Sr89<br>50.53 d<br>5/2+  | Sr90<br>28.79 y<br>0+                   | Sr91<br>9.63 h<br>5/2+        |
| β-                       | <u>6</u> -                              | β-                            |
| Rb88<br>17.78 m<br>2-    | <b>Rb89</b><br>15.15 m<br>3/2-          | <b>Rb90</b><br>158 s<br>0-    |
| β-                       | β-                                      | β-                            |
| Kr87<br>76.3 m<br>5/2+   | Kr88<br>2.81 h<br>0+                    | Kr89<br>3.15 m<br>(3/2+,5/2+) |
| β-<br><b>D</b> θζ        | β-                                      | β <sup>.</sup>                |
| 55.1 s<br>(2-)           | Br8 /<br>55.60 s<br>3/ <mark>.</mark> - | Br88<br>16.34 s<br>(1,2-)     |
| β-                       | β-n                                     | β- <b>n</b>                   |
| Se85<br>31.7 s<br>(5/2+) | Se86<br>15.) s<br>0+                    | Se87<br>5.29 s<br>(5/2+)      |
| β-                       | β-                                      | β- <b>n</b>                   |

Ζ

N

*N*=52 isotones

# Experimental setup Secondary targets





#### 3 targets: C, CH<sub>2</sub>, CD<sub>2</sub> + empty

## ZeroDegree spectrometer

| Mode             | p res. | p acce. | Ang. acce.          |
|------------------|--------|---------|---------------------|
| Large acceptance | 1240   | 6%      | 90mrad(H)x60mrad(V) |

#### 5 brho settings: +3%, 0%(≡Brho of secondary beam), -3%, -6%, -9%



## Particle identification



## Charge states identification

#### Reaction products from <sup>137</sup>Cs



A/Q resolution=4.8 x 10<sup>-3</sup> (FWHM) Z resolution=0.47 (FWHM)

### **Inverse kinematics**



Cross section on proton:  $\sigma_p = (\sigma_{CH2} - \sigma_C)/2$ Cross section on deuterium:  $\sigma_d = (\sigma_{CD2} - \sigma_C)/2$ 

## Comparison with EPAX and SPACS

SPACS: Empirical parameterization for proton/neutron-induced spallation reactions



C. Schmitt, K.-H. Schmidt, and A. Kelic-Heil, Phys. Rev. C 90, 064605 (2014)

# **Comparison with PHITS**

PHITS: Particle and Heavy Ion Transport code System



GEM: Furihata, NIM B 171 (2000) 251

PHITS calculations are provided by Prof. Watanabe's group, Kyushu Univ.

## **Comparison with PHITS**

Overestimation on the magnitude of odd-even staggering



### Cross sections for <sup>90</sup>Sr on H and D



#### Cross sections for <sup>90</sup>Sr on H and D



## Difference between $\sigma_d$ and $\sigma_p$



\$\sigma\_d/\sigma\_p\$ increases towards neutron-deficient side
 \$\Delta Z\$ increases, \$\sigma\_d/\sigma\_p\$ increases
 \$\-Possible reason: \$\sigma\_{pp}\$ @200MeV/u\$

### Potential for LLFP transmutation

*d*-induced spallation reaction

*p*-induced spallation reaction





http://www.riken.jp/pr/press/2016/20160219\_1/

### Reduction of radiotoxicity

<sup>137</sup>Cs-><sup>135</sup>Cs

|                   | Cross section | Halflife [year]     |
|-------------------|---------------|---------------------|
| <sup>137</sup> Cs | 1 barn        | 30                  |
| <sup>135</sup> Cs | 64 mb         | 2.3x10 <sup>6</sup> |

<sup>90</sup>Sr-><sup>79</sup>Se

|                  | Cross section | Halflife [year]     |
|------------------|---------------|---------------------|
| <sup>90</sup> Sr | 0.9 barn      | 29                  |
| <sup>79</sup> Se | 1 mb          | 6.5x10 <sup>4</sup> |

# Summary

Reaction study on <sup>90</sup>Sr and <sup>137</sup>Cs •Inverse kinematics using RIBF facilities •Cross sections on carbon, *p*, *d* •Comparison with calculations

Potential for the transmutation on <sup>90</sup>Sr and <sup>137</sup>Cs

- •Large total cross section
- •Reduction in the radiotoxicity
- •Importance of *d*-induced reaction
- •Collaboration with nuclear engineering

#### Perspective

- Systematic study on other LLFP nuclides
- Energy dependence of cross section Starting point (~200 MeV/u) Low reaction energy
- Energy and angular distribution of neutrons Reuse of neutrons

Physics Letters B 754 (2016) 104-108



Contents lists available at ScienceDirect

Physics Letters B



www.elsevier.com/locate/physletb

#### Spallation reaction study for fission products in nuclear waste: Cross section measurements for <sup>137</sup>Cs and <sup>90</sup>Sr on proton and deuteron



H. Wang<sup>a,\*</sup>, H. Otsu<sup>a</sup>, H. Sakurai<sup>a</sup>, D.S. Ahn<sup>a</sup>, M. Aikawa<sup>b</sup>, P. Doornenbal<sup>a</sup>, N. Fukuda<sup>a</sup>, T. Isobe<sup>a</sup>, S. Kawakami<sup>c</sup>, S. Koyama<sup>d</sup>, T. Kubo<sup>a</sup>, S. Kubono<sup>a</sup>, G. Lorusso<sup>a</sup>, Y. Maeda<sup>c</sup>, A. Makinaga<sup>e</sup>, S. Momiyama<sup>d</sup>, K. Nakano<sup>f</sup>, M. Niikura<sup>d</sup>, Y. Shiga<sup>g,a</sup>, P.-A. Söderström<sup>a</sup>, H. Suzuki<sup>a</sup>, H. Takeda<sup>a</sup>, S. Takeuchi<sup>a</sup>, R. Taniuchi<sup>d,a</sup>, Ya. Watanabe<sup>a</sup>, Yu. Watanabe<sup>f</sup>, H. Yamasaki<sup>d</sup>, K. Yoshida<sup>a</sup>

<sup>&</sup>lt;sup>a</sup> RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

<sup>&</sup>lt;sup>b</sup> Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

<sup>&</sup>lt;sup>c</sup> Department of Applied Physics, University of Miyazaki, Miyazaki 889-2192, Japan

<sup>&</sup>lt;sup>d</sup> Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan

<sup>&</sup>lt;sup>e</sup> Graduate School of Medicine, Hokkaido University, North-14, West-5, Kita-ku, Sapporo 060-8648, Japan

<sup>&</sup>lt;sup>f</sup> Department of Advanced Energy Engineering Science, Kyushu University, Kasuga, Fukuoka 816-8580, Japan

<sup>&</sup>lt;sup>g</sup> Department of Physics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan

## Collaborations

#### **RIKEN Nishina Center**

HW, H. Otsu, H. Sakurai, D. S. Ahn, P. Doornenbal, N. Fukuda, N. Inabe, T. Isobe, T. Kubo, S. Kubono, G. Lorusso, Y. Shiga, H. Suzuki, P.-A. Söderström, H. Takeda, S. Takeuchi, Y. Watanabe, K. Yoshida

#### Hokkaido University

M. Aikawa, A. Makinaga

#### Japan Atomic Energy Agency

T. Fukahori

#### Kyushu University

Y. Watanabe

#### Miyazaki University

S. Kawakami, Y. Maeda

#### University of Tokyo

T. Ando, S. Koyama, T. Miyazaki, S. Momiyama, M. Niikura, R. Taniuchi, H. Yamazaki

## The ImPACT program

Impulsing Paradigm Change through Disruptive Technologies Program

Reduction and Resource Recycling of High-level Radioactive Wastes through Nuclear Transmutation

#### **Disruptive Innovation**

#### Keys to breakthrough

• To be the first in the world to obtain nuclear reaction data for long-lived fission products, and to confirm the world's first nuclear reaction path for conversion to short lived nuclides or stable nuclides.



http://www.jst.go.jp/impact/en/program/08.html

PL: Mizoguchi (Toshiba) Project 1: Development of separation and recovery technologies

PL: Shimoura (CNS)/Sakurai(RIKEN) Project 2: Obtained nuclear reaction data & new nuclear reaction control method

PM:Fujita

PL: Niita (RIST) Project 3: Reaction theory modeling and simulation

PL: Sakurai (RIKEN) Project 4: Evaluation of nuclear transmutation system and development of elemental technologies

PL: Tsujimoto (JAEA) Project 5: Process concept for design

#### ImPACT in 2015 spring (BigRIPS+ZeroDegree)

Joint programs of ImPACT Project 2

- Fragmentation reaction measurement (Watanabe ; Kyushu)
- Coulomb breakup/excitation (Nakamura ; TITECH)
- Neutron knockout measurement (Otsu ; RIKEN)

Using secondary beams from In-flight fission of 345 MeV/u U beam

- Secondary beams :
  - 100 MeV/u : <sup>107</sup>Pd <sup>93</sup>Zr + <sup>90</sup>Sr <sup>135</sup>Cs
  - 200 MeV/u : <sup>107,108</sup>Pd
     <sup>93,94</sup>7r

#### ImPACT in 2015 autumn (BigRIPS+SAMURAI)

Joint programs of ImPACT Project 2

- Fragmentation reaction measurement (Watanabe ; Kyushu)
- Coulomb breakup/excitation (Nakamura ; TITECH)
- Neutron knockout measurement (Otsu ; RIKEN)

Using secondary beams from In-flight fission of 345 MeV/u U beam

- Secondary beams :
  - 100 MeV/u : <sup>93</sup>Zr
     <sup>79</sup>Se
  - 200 MeV/u : <sup>93,94</sup>Zr <sup>79,80</sup>Se

# Summary

Reaction study on LLFP Pre-ImPACT -- <sup>137</sup>Cs, <sup>90</sup>Sr ImPACT2015@ZeroDegree --<sup>107</sup>Pd, <sup>93</sup>Zr, <sup>135</sup>Cs ImPACT2015@SAMURAI --<sup>93,94</sup>Zr, <sup>79,80</sup>Se

Plan for the ImPACT campaign in 2016
Lower energy with the ZeroDegree spectrometer

## Contributor list for ImPACT 2015 spring

#### **RIKEN Nishina Center**

H. Otsu, HW, H. Sakurai, S. Chen, N. Chiga, P. Doornenbal, T. Ichihara, T. Isobe, S. Kubono, T. Matsuzaki, Y. Shiga (+Rikkyo Univ.), P.-A. Söderström, S. Takeuchi, Y. Watanabe,

K. Yoshida, N. Fukuda, H. Suzuki, H. Takeda, Y. Shimizu, D. S. Ahn, H. Sato, M. Uesaka, T. Kubo

#### Kyushu University

Y. Watanabe, S. Kawase (+CNS), K. Nakano, S. Araki, T. Kin

#### Tokyo Institute of Technology

Y. Togano, M. Shikata, S. Takeuchi (+RNC), T. Nakamura, Y. Kondo, J. Tsubota, A. Saito, Y. Ozaki

#### Miyazaki University

Y. Maeda, S. Kawakami, T. Yamamoto

#### University of Tokyo

S. Momiyama , M. Niikura, R. Taniuchi, S. Koyama, T. Ando, S. Nagamine, T. Saito, K. Wimmer

#### CNS, Univ. of Tokyo

S. Michimasa, M. Matsushita, S. Shimoura

#### Hokkaido University

A. Makinaga, M. Aikawa

### Contributor list for ImPACT 2015 autumn

RIKEN Nishina Center Hideaki Otsu HW Nobuyuki Chiga Yasushi Watanabe Tadaaki Isobe Paer Anders Söderström Takashi Ichihara Hiroyoshi Sakurai

#### RNC BigRIPS Team

Naoki Fukuda Koichi Yoshida Hiroshi Suzuki Hiroyuki Takeda Yohei Shimizu Deuk Soon Ahn Toshiyuki Sumikama Hiromi Sato Naohito Inabe Toshiyuki Kubo

#### Kyushu U.

Shoichiro Kawase Keita Nakano Junki Suwa Shohei Araki Yukinobu Watanabe Tokyo Tech Satoshi Takeuchi Yasuhiro Togano Yosuke Kondo Mizuki Shikata Junichi Tsubota Atsumi Saito Tomoyuki Ozaki Takahito Tomai Akihiro Hirayama Takashi Nakamura Tohoku U. Toshio Kobayashi Kyoto U. Noritsugu Nakatsuka U. Tokyo Shunpei Koyama Takeshi Saito Shunsuke Nagamine CNS, U. Tokyo Shin' ichiro Michimasa Masashi Matsushita Rikkyo U. Junki Amano Masamichi Amano Osaka U. Masaomi Tanaka Yutaro Tanaka

Hang Du

Niigata U.

Maya Takechi Kenji Nishizuka Ayaka Ikeda Kazuya Chikaato Tokyo U. of Science Daiki Nishimura Yuki Kanke Hiroyuki Oikawa Miyazaki U. Yukie Maeda Kochi U. of Tech Sadao Momota Hokkaido U. Masayuki Aikawa TU Darmstadt, Germany Hans Toshihide Törngvist Leyla Atar Julian Kahlbow Tom Aumann **KVI**, Nederlands Ali Najafi Christiaan Douma IRB, Croatia Igor Gašparić ELTE, Hungary Ákos Horváth

Thank you