

Measurement of single electrons from semileptonic charm and bottom hadron decays in Au+Au collisions at RHIC-PHENIX experiment

Takashi HACHIYA RIKEN BNL Research Center

Result from Phys. Rev. C 93.034904 (2016)

RIBF Physics Seminar, Takashi HACHIYA

Quark Gluon Plasma (QGP)

- QGP:
 - Quarks & gluons are deconfined with hot & dense environment (Tc : ~170MeV)
 - Confirmed experimentally by High energy heavy-lon collisions

• Study characteristics of QGP

QGP Observables

Nuclear modification factor $R_{AA} = \frac{Yield(Au + Au)}{Ncoll + Yield(p + p)}$

1 with no suppression

Sensitive to parton energy loss at high pi

v₂: Azimuthal anisotropy

Pressure gradient pushes particles and make corrective motion

- -> Collective flow of particles
- -> Azimuthal distribution can be anisotropic
- v2 : 2nd Fourier coefficient

Sensitive to collective motion and medium coupling

Large pres.

Smaller

Small pressure gradient

grad.

Why heavy flavor, bottom & charm ?

- Mainly created at early stage of the collision Mc~1.3GeV Tqgp ~400MeV
 - Production can be calculated by pQCD
- Passing through QGP
 - Suffer the energy loss and flow effect HQ could be modified

Modification of Heavy flavor is a good tool to study property of QGP

Mb~4.5GeV Λ_{OCD} ~200MeV

Previous inclusive (charm & bottom) result

$HF \rightarrow e in Au + Au 200 GeV$

- R_{AA}: <u>strong suppression @ high pT</u>
 - R_{AA}=1@ low pT
- v₂ : <u>significant flow</u>

Surprising results

HQ expected to be less energy loss and smaller (zero) flow due to heavy mass

- Questions
 - What is the energy loss mechanism for heavy flavors?
 - Mass dependence of energy loss?

RIBF Physics Seminar, Takashi HACHIYA

Energy loss mechanism

- Radiative loss (~ high pT)
 - Gluon radiation
 - Dead cone effect (PLB519:199,2001): $\Delta E_g > \Delta E_{LQ} > \Delta E_{HQ}$
 - Sensitive to gluon density
- Collisional loss (~ low pT)
 - Multiple scattering
 - Brownian motion in the medium
 - Sensitive to diffusion constant (D)

need to measure bottom & charm separately

Measurement

Challenge to separate b and c origin

• Utilize their different lifetimes and decay kinematics

decay length (cτ) B⁺: 491.1 μm, D⁺: 311.8 μm,

if we measure

- Precise displaced tracking
- Precise primary vertex

We can separate between corigin electrons and b-origin electrons experimentally!

PHENIX Silicion VerTeX Detector (VTX)

PHENIX Silicon Vertex Detector(VTX)

- VTX installed in Run2011
 - Large coverage
 - $|\eta| < 1.2, \phi \sim 2\pi$
 - 4 layer silicon detectors
 - 2 inner pixel
 - 2 outer strip

Pixel & Strip(ixel) Ladders

• Pixel Ladder

- 50 x 425 um (ϕ x z) \rightarrow 14.4 um in ϕ , 1.5% X₀
- RIKEN radiation lab group is responsible
- Strip(ixel) ladder 2D

- 80 x 1000 um (ϕ x z) \rightarrow 23.0 um in ϕ , 5% X₀ 8bit ADC
- Newly designed at BNL for PHENIX

VTX construction are completed!!

Takashi & Mike

Atsushi, Mike Ryohji, Hidemitsu

Analysis

Analysis procedure

- 1. Measure displaced tracking of electrons using VTX
 - DCA of the electrons
 - Backgrounds estimation
- 2. Separate $b \rightarrow$ e and c \rightarrow e component
 - Unfold the b and c components

Precise displaced tracking

decay

- Calculate Distance of Closest Approach (DCA) of electrons to primary vertex
 - Proxy for decay length
- Calculate separately
 - DCA_T = in transverse plane
 - $DCA_{I} = in longitudinal plane$
- DCA_{T} is better by detector design

beam

- DCA_T in Run2011 dataset
 - 2.5B min. bias events
 - 5 p_T bins in 1.5-5GeV/c
 - No efficiency correction
- Contain various BG components
 - Determine the normalization and DCA_T shape

• Various backgrounds

Detector origin backgrounds

- Mis-identified hadrons
- Random association with VTX

 DCA_T shape and normalization determined by data driven (mixed)

Physics origin backgrounds

- Photon Conversions
 - ~ 75% rejected by analysis cut
- Dalitz decays of $\pi^0 \& \eta$
- $J/\psi \rightarrow e+e$
- Ke3 (K \rightarrow e+X)
- DCA_T shape from MC

Normalization from measured yield

- Detector origin backgrounds
- Mis-identified hadrons
- Random association with VTX

DCA_T shape and normalization determined by data driven (mixed)

Physics origin backgrounds

- <u>Photon Conversions</u>
 - ~ 75% rejected by analysis cut
- Dalitz decays of $\pi^0 \& \eta$
- $J/\psi \rightarrow e+e$
- Ke3 (K \rightarrow e+X)
- DCA_T shape from MC

Normalization from measured yield

• Various backgrounds

Detector origin backgrounds

- Mis-identified hadrons
- <u>Mis-associated with VTX</u>

DCA_T shape and normalization determined by data driven (mixed)

Physics origin backgrounds

- <u>Photon Conversions</u>
 - ~ 75% rejected by analysis cut
- Dalitz decays of $\pi^0 \& \eta$
- $J/\psi \rightarrow e+e$
- Ke3 (K \rightarrow e+X)
- $\mathsf{DCA}_{\!\mathsf{T}}$ shape from MC

Normalization from measured yield

Analysis procedure

- 1. Measure displaced tracking of electrons using VTX
 - DCA of the electrons
 - Backgrounds estimation
- 2. Separate $b \rightarrow$ e and c \rightarrow e component
 - Unfold the b and c components

Strategy of bottom & charm separation

Unfold method employs to separate bottom & charm
Fit with DCA and yield simultaneously

- Purpose: extract parent B/C hadron yield
 - B/C hadron based on Bayesian inference
 - MCMC(Markov chain Monte Carlo) sampling
 - Obtain probability of B/C yield for pT bins

- Purpose: extract parent B/C hadron yield
 - B/C hadron based on Bayesian inference
 - MCMC(Markov chain Monte Carlo) sampling
 - Obtain probability of B/C yield for pT bins

- Purpose: extract parent B/C hadron yield
 - B/C hadron based on Bayesian inference
 - MCMC(Markov chain Monte Carlo) sampling
 - Obtain probability of B/C yield for pT bins

- Purpose: extract parent B/C hadron yield
 - B/C hadron based on Bayesian inference
 - MCMC(Markov chain Monte Carlo) sampling
 - Obtain probability of B/C yield for pT bins

 $P(B|A) = \frac{P(A|B) \cdot P(B)}{P(A)}$

- Purpose: extract parent B/C hadron yield
 - B/C hadron based on Bayesian inference
 - MCMC(Markov chain Monte Carlo) sampling
 - Obtain probability of B/C yield for pT bins

 $P(B|A) = \frac{P(A|B) \cdot P(B)}{P(A)}$

- Purpose: extract parent B/C hadron yield
 - B/C hadron based on Bayesian inference
 - MCMC(Markov chain Monte Carlo) sampling
 - Obtain probability of B/C yield for pT bins

 $P(B|A) = \frac{P(A|B) \cdot P(B)}{P(A)}$

Validation: Unfolding & Data

- Unfolding is consistent with electron data for yield and DCA_T
 - Diff likelihood: $\Delta LL = -0.6 \sim 3.8 \sigma$

PRC.93.034904 (2016) Full probability distribution b/c hadron yield

- Full probability distribution gives bottom & charm yield
- Correlation in yield
 - Round
 - no correlation
 - Positive
 - Move simultaneously
 - Negative
 - charm \uparrow + bottom \downarrow

Full probability distribution b/c hadron yield

- Full probability distribution gives bottom & charm yield
- Correlation in yield
 - Round
 - no correlation
 - Positive
 - Move simultaneously
 - Negative
 - charm \uparrow + bottom \downarrow

Full probability distribution b/c hadron yield

Full probability distribution gives bottom & charm yield

Correlation in yield

- Round
 - no correlation
- Positive in charm near pT
 - increase simultaneously
- Negative
 - charm \uparrow + bottom \downarrow

Results

Unfolded Charm and Bottom hadron

- Bottom & Charm hadron yield are successfully extracted
 - Whole rapidity
- First bottom hadron measurement 2016/10/11 RIBF Physics Seminar, Takashi HACHIYA

VTX Result

Unfolded vs STAR Charm Hadron

- Unfold charm hadron yield is compared with to STAR D⁰
 - Convert D⁰ by PYTHIA model
 - Scale to |y|<1
 - Fit STAR D⁰ with Levy function
- Unfolded charm hadron yield is in agreement with STAR D⁰

- FONLL is consistent with data within large uncertainties
- Shape is different with FONLL
 - increasing at p_T =3GeV/c and decreasing w/ higher p_T

Au+Au shows difference with p+p

Comparison with p+p data

- Au+Au is difference with p+p
- Means bottom suppression is different with charm

Bottom and Charm R_{AA}

Using

 F_{AuAu} : bottom fraction in Au+Au F_{pp} : STAR bottom fraction in p+p R_{AA}^{HF} : PHENIX HFe R_{AA}^{HF} in Au+Au

$$R_{AuAu}^{c \to e} = \frac{(1 - F_{AuAu})}{(1 - F_{pp})} R_{AA}^{HF}$$
$$R_{AuAu}^{b \to e} = \frac{F_{AuAu}}{F_{pp}} R_{AA}^{HF}$$

•Bottom is similarly suppressed at high p_T

- •Bottom is less suppressed than charm at p_T =3-4 GeV/c
- •First bottom measurement @ RHIC energy

Comparison with Models

- Radiative energy loss by DGLV model (central)
 - Consistent at low p_{T_r} different at high p_T
 - Increasing monotonically
- Updated DGLV model w/ collisional loss
 - Slightly off (0-10%)
 - Reasonable agreement with measured electron R_{AA}

VTX Result

AL MAL

Comparison with Models

- Collisional loss by Langevin approach
 - Sensitive to medium coupling
 - Increasing monotonically
- Agree with D=6 at low p_T
 - Smaller D ⇔ Strong coupling
 - Disagree with D=1.5 (must be too small)

VTX Result

ALAT MAL

Comparison with Model

- Collisional loss by T-Matrix approach
 - Full non-perturbative HQ transport coefficient
 - p+p baseline differs from FONLL
 - Increasing @ low pT and decreasing @ high pT
- Qualitatively similar trend with data
 - Not well matched with data

2016/10/11

VTX Result

ALAN AR

Comparison with Model

- Models are not consistent with data
 - Models shows monotonic and non-monotonic behavior
 - Data w/ uncertainty is hard to constrain these models
- Need higher statistics to disentangle effects
 - Au+Au and p+p reference are available from 2014-2016

VTX Result

Future prospects

- High quality data in run2014 2016 Au+Au & p+p
 - 20 time larger statistics in run2014/2016 Au+Au 200GeV
 - Detector performance improved

B-fraction & R_{AA} High p_T extension Centrality dependence HF vn measurement

Apply the analysis technique to run2014 – 2016 data

Example : DCA_{T} in run2014

Future prospects

₹ 1.2

0.8

0.6

0.4

0.2

2

B→J/ψ

- Non-prompt J/ ψ (B \rightarrow J/ ψ)
 - Direct heavy flavor measurement
- New result in Cu+Au from FVTX (1.2<|y|<2.2)
 - Consistent with unity, no suppression at low pT

6

8

10

 $J/\psi p_{T}$ [GeV/c]

12

卤

Summary

- First measurement of separated bottom and charm electrons by PHENIX VTX with the unfolding method
- Extracted Bottom and Charm hadrons
- First result of bottom suppression at RHIC energy
 - less suppressed at low p_T
 - similarly suppressed as charm at high p_T
- Separated bottom & charm provides additional information to disentangle QGP property
- 20x statistics in run2014-2016 enables more precise measurement

backup

Systematic uncertainty on unfolding

- Systematic uncertainty is obtained by changing the inputs within systematic uncertainty for each component.
- Type of uncertainties
 - 1. Unfold uncertainty : Due to data statistics
 - 2. Spectra uncertainty : Invariant HF spectrum
 - 3. High-mult Bkg : Mis-associated bg
 - 4. FNP : normalization on photonic BG
 - 5. Ke3 : Ke3 normalization
 - 6. α : Strength of smoothness
 - 7. θ_{prior} : Reference hadron shape for smoothness

RIBF Physics Seminar, Taka:

