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Introduction

In quantum field theory. the main analytic tool to determine physical quan-

tities is perturbation theory. However, simple arguments indicate that the

perturbative expansion is always divergent. As a consequence, when the

interaction is not weak enough the plain expansion is useless.

Unlike convergent series, divergent series do not determine, in general, a

unique analytic function. The question is then how much does the pertur-

bative expansion determine a field theory?

Borel summability. An exception is provided by the class of divergent

Borel summable series to which correspond a unique function.

The questions then become, which field theories generate Borel summable

expansions? What kind of additional information should one derive from the

field theory to complement the expansion when it is not Borel summable?



Large order behaviour. Using the quartic anharmonic potential as a toy

model, Bender and Wu were able to determine the large order behaviour

of perturbation theory exactly but with methods that do not generalize to

quantum field theory.

In the late seventies, following Lipatov idea, the large order behaviour of

perturbation theory in quantum mechanics and a number of quantum field

theories could then determined using functional integral methods.

In quantum field theory like in quantum mechanics with analytic poten-

tials, the large order behaviour is related to the generalized barrier pen-

etration amplitude in the semi-classical limit when the parameters in the

interaction take physical or non-physical values (real or complex). The

latter is determined by instantons, finite action solutions of the Euclidean

equations of motion.

However, in renormalizable quantum field theories (like φ4d=4), additional

contributions are generated by UV or IR divergences (renormalons).



The large order behaviour gives only indications of possible Borel summa-

bility, but can show that a series is non-Borel summable: This happens in

the case of physical barrier penetration.

The simplest examples of non-Borel summable series is provided by the

spectrum of Hamiltonians involving analytic potentials with degenerate

minima in quantum mechanics. The question then is how can one determine

the exact spectrum by weak interaction expansions?

In this talk, the form of the hyperasymptotic semi-classical expansion of

low-lying energy levels in the example of the quartic double-well is described

and it is indicated how it yields the exact spectrum.

Such an expansion involves an infinite number of perturbative series.

However, these series can be derived from generalized Bohr–Sommerfeld

quantization formulae, which involve only a few spectral functions.

The properties of the hyperasymptotic expansion has been later linked to

Ecalle’s theory of resurgent functions, as shown by Pham’s collaborators.



The form of the hyperasymptotic expansion has been initially conjectured

on the basis of a semi-classical evaluation by the steepest descent method

of the path integral representation of the partition function.

The infinite number of quasi-saddle points or multi-instantons, yields con-

tributions that can be summed exactly at leading order.

The same strategy could still be useful in problems for which our present

understanding is more limited.

Finally, in quantum mechanics these properties can also been understood

within the framework of the complex WKB expansion (Voros) of the solu-

tions of the Schrödinger equation.
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Hyperasymptotic expansions and generalized Bohr–Sommerfeld

quantization formulae

Remark. The results we describe here, mainly generalize to polynomial

potentials and, on a case by case study, to some other analytic potentials

like periodic potentials of cosine potential type.

Perturbative knowledge. Perturbative expansions are obtained by first

approximating the potential by a harmonic potential near its minimum.

This leads to generically divergent expansions in powers of ~ for energy

eigenvalues of order ~.

For potentials with degenerate minima, expansions in powers of ~ are

non-Borel summable because all terms have, at large orders, the same sign

and the Borel transform has singularities on the integration contour.

Moreover, additional contributions of order exp(−const. /~), generated

by quantum tunnelling between minima, have at least to be added.



The quartic double-well potential

We explain explicitly the conjecture in the example of the quartic double-

well potential. The symbol g plays the role of ~ and energy eigenvalues are

measured in units of ~, a normalization adapted to perturbative expansions.

The Hamiltonian corresponding to the double-well potential can be writ-

ten as

H = −g
2

(

d

dq

)2

+
1

g
V (q), V (q) =

1

2
q2(1− q)2.

The potential is symmetric in q ↔ (1− q) and has two degenerate minima

at q = 0, 1. The Hamiltonian thus commutes with the reflection operator,

Pψ(q) = ψ(1− q) ⇒ [H,P ] = 0 .

The eigenfunctions and eigenvalues of H satisfy

Hψǫ,N (q) = Eǫ,N (g)ψǫ,N (q), Pψǫ,N (q) = ǫψǫ,N (q),

where ǫ = ±1 and Eǫ,N (g) = N + 1/2 +O(g).



The initial conjectures (Zinn-Justin 1983)

We have conjectured that the eigenvalues Eǫ,N (g) have an exact semi-

classical expansion of the form

Eǫ,N (g) =

∞
∑

0

E
(0)
N,lg

l

+

∞
∑

n=1

(

2

g

)Nn(

−ǫe
−1/6g

√
πg

)n n−1
∑

k=0

(

ln(−2/g)
)k

∞
∑

l=0

EN,nklg
l.

The series
∑

EN,nklg
l in powers of g are not Borel summable for g > 0 but

can be summed by Borel transformation for g negative, where ln(−g) is real.
One then proceeds by analytic continuation to g > 0 consistently for the

series and ln(−g).



In the analytic continuation, the Borel sums become complex with imagi-

nary parts exponentially smaller by about a factor e−1/3g than the real parts.

These imaginary contributions are cancelled by the perturbative imaginary

parts coming from the function ln(−2/g).

Generalized Bohr–Sommerfeld quantization formula. We have also con-

jectured that all the series are generated by an expansion for g small of

a spectral equation or generalized Bohr–Sommerfeld quantization formula,

which in the case of the double-well potential reads (ǫ = ±1)

1

Γ( 12 −B)
+

ǫi√
2π

(

−2

g

)B(E,g)

e−A(E,g)/2 = 0

with
B(E, g) = −B(−E,−g) = E +

∑

k=1g
kbk+1(E),

A(E, g) = −A(−E,−g) = 1

3g
+
∑

k=1g
kak+1(E).



The coefficients bk(E), ak(E) are odd or even polynomials in E of degree

k. The three first orders, for example, are

B(E, g) = E + g
(

3E2 + 1
4

)

+ g2
(

35E3 + 25
4 E
)

+O
(

g3
)

,

A(E, g) = 1
3g

−1 + g
(

17E2 + 19
12

)

+ g2
(

227E3 + 187
4 E

)

+O
(

g3
)

.

The function B(E, g) can be inferred from the complex WKB perturbative

expansion. The function A(E, g) has initially been determined at this order

by a combination of analytic and numerical calculations.

However, more recently, it has been proved (Dunne and Unsal) for the

double well and cosine potentials, using differential equation techniques, the

simple relation
∂E

∂B
= −6Bg − 3g2

∂A

∂g
,

which reduces the determination of both functions to the determination of

the perturbative spectral function B(E, g).



The n-instanton contributions at leading order

Replacing the functions A and B by their leading terms, one obtains

e−1/6g

√
2π

(

−2

g

)E

= − ǫi

Γ( 12 − E)
⇔ cosπE

π
= ǫi

e−1/6g

√
2π

(

−2

g

)E
1

Γ( 12 + E)
.

Expanding the equation in powers of e−1/6g, one recovers terms that, in the

path integral representation, correspond to the successive multi-instanton

contributions at leading order, as illustrated later.

For example, the term proportional to e−1/6g,

E
(1)
N (g) = − ǫ

N !

(

2

g

)N+1/2 e−1/6g

√
2π

(

1 +O(g)
)

,

can be identified with the one-instanton contribution at leading order.

The next term, (the two-instanton contribution), is (ψ = (lnΓ)′)

E
(2)
N (g) =

1

(N !)
2

(

2

g

)2N+1 e−1/3g

2π
[ln(−2/g)− ψ(N + 1) +O (g ln g)] .



More generally, the nth power, which can be identified with the n-instanton

contribution at leading order, has the form

E
(n)
N (g)

= (−1)n
(

2

g

)n(N+1/2)(e−1/6g

√
2π

)n
[

P (N)
n

(

ln(−2/g)
)

+O
(

g (ln g)
n−1
)]

,

in which PN
n (σ) is a polynomial of degree (n− 1). For example, for N = 0

one finds (γ is Euler’s constant)

P
(0)
1 (σ) = 1 , P

(0)
2 (σ) = σ + γ , P

(0)
3 (σ) =

3

2
(σ + γ)

2
+
π2

12
· · · .

.



An application: Large order behaviour of perturbation series

After an analytic continuation from g negative to g positive, the Borel sums

become complex with an imaginary part exponentially smaller by about a

factor e−1/3g than the real part.

Consistently, the function ln(−2/g) also becomes complex with an imag-

inary part ±iπ. Since the sum of all contributions is real, imaginary parts

must cancel.

For example, the non-perturbative imaginary part of the Borel sum of

the perturbation series cancels the perturbative imaginary part of the two-

instanton contribution. For the ground state,

ImE(0)(g) ∼
g→0

1

πg
e−1/3g Im

[

P
(0)
2

(

ln(−2/g)
)

]

= −1

g
e−1/3g .



The coefficients of the perturbative expansion

E(0)(g) =
∑

k

E
(0)
k gk

of the ground state energy, are related to the imaginary part by a Cauchy

integral (k > 1):

E
(0)
k =

1

π

∫ ∞

0

Im
[

E(0)(g)
] dg

gk+1
.

For k → ∞, the integral is dominated by small g values. Thus,

E
(0)
k ∼

k→∞
− 1

π

∫ ∞

0

e−1/3g

gk+2
dg = − 1

π
3k+1k! .



Similarly, since ImE(1)(g) and ImE(3)(g) cancel at leading order,

ImE(1)(g) ∼ 3π

(

e−1/6g

√
πg

)3

[ln(2/g) + γ +O(g ln(g))] .

The coefficients of the expansion

E(1)(g) = − 1√
πg

e−1/6g

(

1 +

∞
∑

E
(1)
k gk

)

are given by the dispersion integral

E
(1)
k = − 1

π

∫ ∞

0

{

Im
[

E(1)(g)
]√

πg e1/6g
} dg

gk+1
.

Combining both equations, one finds

E
(1)
k ∼ − 3

π

∫ ∞

0

(

ln
2

g
+ γ

)

e−1/3g dg

gk+2
∼ −3k+2

π
k! (ln 6k + γ) .

Both results have been verified numerically by calculating many terms of

the corresponding series.
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Fig. 1 Numerical evaluation of ∆(g) compared with the asymptotic expansion.

The real part of the two-instanton contribution

Another numerical test is provided by the evaluation of the ratio,

∆(g) = 4

{

1
2 (E0,+ + E0,−)− Re

[

Borel sum E(0)(g)
]}

(E0,+ − E0,−)
2
(ln 2g−1 + γ)

= 1 + 3g + · · · ,

which is dominated for g ≪ 1 by the two-instanton contribution.



Asymmetric wells

For a potential with two degenerate asymmetric wells,

V (q) = 1
2ω

2
1q

2 +O(q3), V (q) = 1
2ω

2
2(q − q0)

2 +O
(

(q − q0)
3
)

,

the conjectured spectral equation has the form

1

Γ( 12 −B1)Γ(
1
2 −B2)

+
1

2π

(

−2C1

g

)B1(E,g)(

−2C2

g

)B2(E,g)

e−A(g,E) = 0 ,

where B1(E, g) and B2(E, g) are determined by the perturbative expansions

around the two minima of the potential

B1(E, g) = E/ω1 +O(g), B1(E, g) = E/ω2 +O(g),

and the constants C1 and C2 are adjusted in such a way that

A(E, g)− a/g = O(g), a = 2

∫ q0

0

dq
√

2V (q) .



From the poles of Γ-functions for g → 0, one sees that the spectral equa-

tion yields two sets of energy eigenvalues,

EN =
(

N + 1
2

)

ω1 +O(g) , EN =
(

N + 1
2

)

ω2 +O(g).

The same expression contains the instanton contributions to the two differ-

ent sets of eigenvalues.

One verifies that multi-instanton contributions are singular for ω = 1 but

the spectral equation is regular in the symmetric limit.

One-instanton contribution and large order behaviour. The spectral equa-

tion can again be used to infer the large order behaviour of perturbation

theory. Setting ω1 = 1, ω2 = ω, for the energy EN (g) = N + 1
2 + O(g)

one infers that the coefficients ENk of the perturbative expansion of EN (g)

behave, for order k → ∞, like

ENk =
k→∞

KN
Γ(k + (N + 1/2)(1 + 1/ω))

ak+(N+1/2)(1+1/ω)

(

1 +O
(

k−1
))

.



Another analytic potential: the periodic cosine potential

The cosine potential is still an entire function but no longer a polynomial.

On the other hand the periodicity of the potential simplifies the analysis,

because eigenfunctions can be classified according to their behaviour under

a translation of one period T ,

ψϕ(q + T ) = eiϕ ψϕ(q).

For the potential 1
16 (1 − cos 4q) (and thus T = π/2), the conjecture then

takes the form

(

2

g

)−B eA(E,g)/2

Γ( 12 −B)
+

(−2

g

)B e−A(g,E)/2

Γ( 12 +B)
=

2 cosϕ√
2π

.



Multi-Instanton contributions: Direct evaluation

The conjectures were initially motivated by a summation of leading order

multi-instanton contributions. The method may be worth recalling since it

could still be useful for other, less understood, problems.

Partition function and resolvent

The quantum partition function can be expressed as a path integral. The

partition function for a Hamiltonian H with discrete spectrum, has the

expansion

Z(β) ≡ tr e−βH =
∑

N≥0

e−βEN , EN ≥ EN−1.

The trace G(E) of the resolvent of H (after analytic continuation and pos-

sible subtraction) is given by

G(E) = tr
1

H − E
=
∑

N

1

EN − E
=

∫ ∞

0

dβ eβE Z(β) .



The Fredholm determinant D(E) ∝ det(H − E), which vanishes on the

spectrum, follows
∂

∂E
lnD(E) = −G(E).

For a symmetric double-well potential, it is convenient to consider the two

projected partition functions,

Z±(β) = tr
[

1
2 (1± P ) e−βH

]

=
∑

N=0

e−βE±,N ,

where P is the reflection operator. The eigenvalues of H are then poles of

Gǫ(E) =

∫ ∞

0

dβ eβE Zǫ(β), ǫ = ±1

and zeros of Dǫ(E) with

∂

∂E
lnDǫ(E) = −Gǫ(E).

For the periodic cosine potential, one uses a generalized partition function

with twisted boundary conditions depending on a rotation angle.



Path integral and spectrum of the double-well potential

In the path integral formulation of quantum mechanics, the partition func-

tion is given by a summation over closed paths,

Z(β) ∝
∫

q(−β/2)=q(β/2)

[dq(t)] exp

[

−1

g

∫ β/2

−β/2

[

1
2 q̇

2(t) + V
(

q(t)
)]

dt

]

,

We need also

Za(β) ≡ tr
(

P e−βH
)

,

which is obtained by a path integral with the boundary conditions q(−β/2) =
P (q(β/2)).

Then, eigenvalues corresponding to symmetric and antisymmetric eigen-

functions can be inferred from the combinations

Z±(β) = tr
[

1
2 (1± P ) e−βH

]

= 1
2

(

Z(β)±Za(β)
)

.



Perturbative expansion: Steepest descent method

For g → 0, the path integral can be evaluated by the steepest descent

method. Saddle points are solutions qc(t) to the Euclidean equations of

motion. When the potential has a unique minimum, for example, located at

q = 0, the leading saddle point is qc(t) ≡ 0. A systematic expansion around

the saddle point then yields the perturbative expansion of the eigenvalues

of the Hamiltonian.

In the case of the symmetric double-well potential, one must sum over

the two saddle points. To each saddle point corresponds one eigenvalue

and thus all eigenvalues are twice degenerate to all orders in perturbation

theory:

E±,N (g) = E
(0)
N (g) ≡

∞
∑

n=0

E
(0)
N,ng

n.



One-Instanton

Eigenvalues can be inferred from the large β expansion. For β → ∞, leading

contributions to the path integral come from finite action solutions of the

Euclidean equations of motion.

In the case of Za(β), constant solutions do not satisfy the boundary con-

ditions. Finite action solutions (instantons) necessarily correspond to paths

that connect the two minima of the potential (see Fig. 2).

In the example of the quartic double-well potential, such solutions are

qc(t) =
(

1 + e±(t−t0)
)−1

⇒ S(qc) = 1/6 .

Since the two solutions depend on an integration constant t0 (the instanton

position), one finds two one-parameter families of degenerated saddle points.

The corresponding contribution to the path integral is proportional, at

leading order for g → 0 and for β → ∞, to e−1/(6g) and thus is non-

perturbative.



1

–10 –5 5 10

q(t)

t0 t

Fig. 2 The instanton configuration.

The complete calculation involves integrating exactly over the time t0 (the

collective coordinate), which for β finite varies in [0, β], and over the remain-

ing fluctuations in the Gaussian approximation. The two lowest eigenvalues

are given by (ǫ = ±1)

Eǫ,0(g) = lim
β→∞

− 1

β
lnZǫ(β) =

g→0,β→∞
E

(0)
0 (g)− ǫE

(1)
0 (g),

E
(1)
0 (g) =

1√
πg

e−1/6g
(

1 +O(g)
)

.



Multi-instantons

For β finite, one finds subleading saddle points, which correspond to oscil-

lations in the well of the potential −V (q). For β → ∞, the action of the

solutions with n oscillations goes to n× 1/6.

However, the amplitude of the saddle point contribution diverges for β →
∞. Indeed, the classical solutions decompose into a succession of largely

separated instantons and fluctuations that change the distances between

instantons induce only infinitesimal variations of the action.

Therefore, one has to sum over all configurations of largely separated in-

stantons, connected in a smooth way, which become solutions of the equa-

tion of motion only asymptotically, for infinite separation. They depend on

n collective coordinates, the positions of instantons.

Because they are not exact solutions, the action has a dependence on the

collective coordinates, called instanton interaction.



1
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t0 t0 + θ t

Fig. 3 A two-instanton configuration.

Example: the two-instanton configurations

In the infinite β limit, the one-instanton configuration can be written as

q±(t) = f
(

∓(t− t0)
)

, f(t) ≡ 1/
(

1 + et
)

= 1− f(−t),

where the constant t0 characterizes the instanton position.



One verifies that a configuration qc(t) that is the sum of instantons sepa-

rated by a distance θ, up to an additive constant adjusted in such a way as

to satisfy the boundary conditions (Fig. 3),

qc(t) = f(t− θ/2) + f(−t− θ/2)− 1 = f(t− θ/2)− f(t+ θ/2),

has the required properties: it is differentiable and for θ large, but fixed, it

minimizes the variation of the action. The corresponding action is

S(qc) = 1
3 − 2 e−θ +O

(

e−2θ
)

.

The contributions to the classical action of order e−2θ give only a correction

of order g.

For β large, but finite, symmetry between θ and (β − θ) implies

S(qc) = 1
3 − 2 e−θ −2 e−(β−θ) + negligible contributions.



The n-instanton action

For a succession of n instantons (more precisely, alternatively instantons

and anti-instantons) separated by times θi with

∑n
i=1θi = β ,

the classical action Sc(θi) is then

Sc(θi) =
n

6
− 2

n
∑

i=1

e−θi +O
(

e−(θi+θj)
)

.

At leading order, for θi ≫ 1, it is a sum of nearest-neighbour interactions.

For n even, the n-instanton configurations contribute to tr e−βH , while for

n odd they contribute to tr
(

P e−βH
)

(P is the reflection operator).



The n-instanton contribution

The evaluation, at leading order, of the contribution to the path integral

of the neighbourhood of the n-instanton configuration is simple but slightly

technical. One finds that the n-instanton contribution to the combination

Zǫ(β) =
1
2 tr

[

(1 + ǫP ) e−βH
]

,

(ǫ = ±1), can be written as

Z(n)
ǫ (β) = e−β/2 β

n

(

ǫ
e−1/6g

√
πg

)n ∫

θi≥0
∑

θi=β

∏

i

dθi exp

(

2

g

n
∑

i=1

e−θi

)

.

Neglecting the instanton interaction and summing over n one recovers the

one-instanton approximation to the energy eigenvalues.



Beyond the one-instanton approximation: a problem. If one examines

the classical action for multi-instantons, one discovers that the interaction

between instantons is attractive. Therefore, for g small, the dominant con-

tributions to the integral come from configurations in which the instantons

are close.

For such configurations, the concept of instanton is no longer meaningful,

since the configurations cannot be distinguished from fluctuations around

the constant or the one-instanton solutions.

Such a difficulty should have been expected.

In the case of potentials with degenerate minima the perturbative ex-

pansion is not Borel summable and the series determines eigenvalues only

up to exponentially decreasing terms that are of the order of two-instanton

contributions. But if the perturbative expansion is ambiguous at the two-

instanton order, n-instanton contributions with n ≥ 2 cannot be defined.



To proceed any further, it is necessary to first define the sum of the pertur-

bative expansion.

In the example of the quartic double-well potential, one can show that

the perturbation series is Borel summable for g negative and this is the way

we define the sum of the perturbative expansion.

Simultaneously, for g negative, the interaction between instantons be-

comes repulsive and the multi-instanton contributions become meaningful.

Therefore, we first calculate, for g small and negative, both the sum

of the perturbation series and the multi-instanton instanton contributions,

and then perform an analytic continuation to g = |g| ± i0 of all quantities

consistently.



The sum of leading order instanton contributions

We assume that initially g is negative and calculate the sum of leading

n-instanton contributions to the trace of the resolvents,

Gǫ(E) =
∑

n=1

∫ ∞

0

dβ eβE Z(n)
ǫ (β),

where

Z(n)
ǫ (β) ∼ β

n
e−β/2

(

ǫ√
2π

)n

e−n/6g

∫

θi≥0
∑

θi=β

n
∏

i=1

dθi exp

[

2

g

n
∑

i=1

e−θi

]

.

The integration over β is immediate, the integrals over the θi then factorize.

Evaluating the unique integral for g → 0−, summing over n and adding the

resolvent of the harmonic oscillator, one finds for the resolvent Gǫ(E) a

result consistent with the conjectures:

Gǫ(E) = − ∂

∂E
lnDǫ(E) ⇒ Dǫ(E) =

1

Γ( 12 − E)
+ ǫi

(

−2

g

)E e−1/6g

√
2π

.



Perturbative and WKB expansions from Schrödinger equations

These conjectures, motivated by semi-classical evaluations of path integrals

(instanton calculus), have been confirmed by considerations based on the

Schrödinger equation,

[Hψ](q) ≡ −g
2
ψ′′(q) +

1

g
V (q)ψ(q) = Eψ(q),

where the potential V is an entire function. This allows extending the

Schrödinger equation and its solutions to the q-complex plane.

Setting

S(q) = −gψ′(q)/ψ(q),

one derives a Riccati equation from the Schrödinger equation. It reads

gS′(q)− S2(q) + 2V (q)− 2gE = 0 .



One decomposes

S(q) = S+(q) + S−(q) where, formally, S±(q; g, E) = ±S±(q;−g,−E) .

Then,

gS′
− − S2

+ − S2
− + 2V (q)− 2gE = 0 , gS′

+ − 2S+S− = 0 .

The quantization condition (or spectral equation) can then be written as

− 1

2iπg

∮

C

dz S+(z, E) = N + 1
2 ,

where N is also the number of real zeros of the eigenfunction, and C is a

contour that encloses them. This elegant formulation, restricted, however,

to one dimension and analytic potentials, bypasses the difficulties generally

associated with turning points.

It allows a smooth transition between WKB expansion (g → 0, gE fixed),

in our normalization, and perturbative expansion (g → 0, E fixed), which

can be derived by expanding the WKB expansion at E fixed.



V (q)

q1 q2 q3 q4

q
q0

Fig. 4 Degenerate minima: The four turning points.



WKB expansion

At leading order in the WKB limit, the function S+ reduces to

S+(q) = S(q) = S0(q), S0(q) =
√

2V (q)− 2gE

and the quantization condition becomes

N + 1
2 = B(E, g) = − 1

2iπg

∮

C

dz S0(z, E),

where the contour C encloses the cut of S0(q) which joins the turning points.

If the potential has two degenerate, non necessarily symmetric, minima,

for E small enough, the function S0(q) has four branch points q1 < q2 <

q3 < q4 on the real axis (Fig. 4).

One can define two functions B1(E, g) and B2(E, g) which, at leading

order, correspond to contours enclosing the cuts [q1, q2] and [q3, q4].



Moreover, comparing with the conjecture, one infers the decomposition

1

g

∮

C[q2,q3]

dz S+(z) = A(E, g) + ln(2π)−
2
∑

i=1

ln Γ
(

1
2 −Bi(E, g)

)

+Bi(E, g) ln(−g/2Ci),

where, at leading order in the WKB expansion, the contour now encloses a

cut [q2, q3] and the constants Ci are chosen such that A(E, g) has no term

of order g0.


