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Introduction

Two approaches to gauge theories:

¥ Lattice gauge theory (I have nothing to say in this talk)

¥ Sum over perturbation around every classical solution
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Introduction

trans-series expansion g : coupling constant

B 9 B 5 =

b

Perturbation around Perturbation around
the lowest action other classical solutions

After resummation, we hopefully get a sensible answer
which makes sense for any (possibly large) value of U .
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Introduction

First of all, each term of the trans-series expansion
must be well-dePned.

But they are not well-dePned due to IR divergences !
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Introduction

Example : Instantons on R*.

We want to compute the vacuum energy as a function
of the theta angle !

exp(! E(!)Vol) = / [DAle >
1

' 1
S d"X = tr(Fu F" ) 372

292 #J!"# tr( FIJ! F#)

Remark:
The E(!) can have importance for cosmology If we replace

| 1 (string) axion, inRaton,E
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Introduction

Example : Instantons on R*.

Instanton computation of E£(0)

[Ot Hooft,1976]
[see e.g. ColemanOs book]

: Instanton size
11

E(6) 1" / %(pu)bl e

b, = EN for SU(N)

gl 2

92 cos@) + aé

U : RG scale

The Integral over the instanton size ! Is ill-dePned
due to IR divergence at ! '~
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Introduction

Example : Instantons on R*.

Trans-series expansion is ill-debPnedfor vacuum energy:

gl 2

E(l)! dad" R ae 9?2 cos()+ aé

Hand-waving argument:

OThe IR divergence is due to strong dynamics in IR and
somehow it should be cutoff at the dynamical scale.

)

Hopefully the result would give a qualitatively right answer.C
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Introduction

Example : Instantons on R*.

Trans-series expansion is ill-debPnedfor vacuum energy:

gl 2

E(l)! daa" R ae o7 cos() + aé

Hand-waving argument:

OThe IR divergence i -

somebh~ \NR

HopefL

ONG!M

. yIVE a qualltatlvely right answer.C

y 1IN IR and
_...nredl Scale.

)
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Introduction

Example : Instantons on R*.

The correct theta dependence of the vacuum energy
[Witten,1980,1998]

E(0) ~ A*9*  (inlarge N limit)

Actually there exists many metastable vacua labeled by
iInteger ¢ € Z with vacuum energy

E (1) ! A*(! +2"#) (in large N limit)
Each E(!) isnota 2! periodic function of !
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Introduction

What Is a framework which may have well-dePned
trans-series expansion without IR divergences?

Strategy:  [many people in the audience]
compactify the space in a way there Is no IR divergence.

¥ We will consider Rime ! T° with twist

¥ The running coupling is evaluated at the length scale
of T°: smallradius! weak coupling
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Short Summary

[ 4d SU(N) Yang-Mills ] T compactibcation
twist by 1-form symmetry

D
D/

~. ('t Hooft magnetic [3ux)
T* Compactibcationl oo

D
D

“A (Conbpnement at
[ 2d CPM ~'sigma model] = |weak coupling

S1with twisted
boundary condition

IR divergence Is eliminated by twisted  boundary condition.
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Sigma mode|

Sigma model Lagrangian:

L=nh;!,"'"TH"1 (¢ sigma model beld)
Propagator:
_ _ de 6ikX
| ! | ) ~
<' (QZ') (O)> (2" )2 k,2

IR divergences analogous to 4d Yang-Mills:

¥ Log IR divergence of propagator at k! O

(The essence of the Ono Goldstone boson theoremO)
[Coleman,1973]

¥ Instanton integral is also divergent
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Twisted compactibcation

Homogeneous coordinates of C P!

[217 <2, éééZN]

It has global symmetry Zy c SU(XNV)

211 /N Ami /N 62]\7777}/]\7

[217227”' 72*/]\f]%[6 <1, € 272 R ZN]

Twisted compactibcation onS* :
boundary condition is twisted by the above Zy transformation

(@t 2m), =, N g (), ]
r e St

[Dunne-Unsal,2012]
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Twisted compactibcation

g 27ik/N A
(@t 2m), 1= TN (@), ]
k rc St y
time A Q

R

<, space

> Stwith twist by Zy
This boundary condition kills all zero modes
' no IR divergence at all.
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Classical vacua

Classical vacua are given by the bxed points of the twisting.

Vacuum: ! =[--,z, -] independentof x! S

2! 1k/N

Aaaz,aap-[aaae Zk,ad]

$ Z¢ 1 homogeneous coordinates

— _ N R
N discrete vacua: bxed points on CP'by symmetry

Kk
P« =[0,84440,1,0,44480 (k=1,2444N)
\- Y
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Quantum vacua

Degeneracy of classical vacua is lifted by
fractional instantons. [Eto-Fujimori-Isozumi-Nitta-Ohashi-Ohta-Sakai,E]

-

— Instanton
) N

P3




Quantum vacua

|Px! : classical vacuum at the point Py

Due to fractional instantons, the true quantum vacua are
!N
1 = 2 k"N |p, | 11 Zn

k=1
Vacuum energy:

0 + 27T€)
N
I (1 +2"#)? (in large N limit)

Ei(0) o« — cos(

Perfect agreement with large N result!
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Compactibcation of Yang-Mills

LetOs compachkty 4d Yang-Mills on a torud 2
and perform KK reduction.

(Classical) massless modes:
Flat connections £, = 0 of the gauge Peld on T*?

[ 47



Compactibcation of Yang-Mills

(Theorem 1 [Looijengal] ™
As an algebraic variety, the moduli space of SU(N) (3at
connections on T? is given by CPN"' 1

N w,

Yang-Mills instanton on T#! | is essentially given by
CPV~!linstantonon ¥ . ( X :Riemann surface)

\_

(Theorem 2 (Crude statement) [Friedman-Morgan-Witten] A

_J

(For more precise statements see their paper.)
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1-form Z N symmetry

The Zy global symmetry of CPN' 1

[62777,/]\7 647T’L/NZ 62N7T?,/N

21,22, ,ZN] — Z1, ZN]

7 L] ° [ ] ’

It turns out that this Is realized by dimensional reduction
of 1-form center symmetry of SU(N) Yang-Mills

U | eZ! I/N U
U : Wilson line
e ™ -in the center Zy of SU(N)

A little more detalls are discussed later.
| 47



Correspondence In 4d/2d

[ 4d SU(N) Yang-Mills ]

T2 compacti Dcationl

[ 2d CPN ~'sigma model]

Correspondence on

¥ Instantons
¥Zn symmetry

These properties are enough to guarantee the argument

of the next slide:
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Quantum vacua of Yang-Mills

P 1

+ — |nstanton
| \ N

P
‘>J_r 1 Instanton
N
P3

( N )

L 4
S -”
-------

_ 21 ik "/N
Quantumvacua: [''= e " T P! 11 Zy

k=1
+ 2
Ei(0) o< — cos(e 7Tg)
q N y
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Reminder of Situation

[ 4d SU(N) Yang-Mills ]

D
D/

T* Compactibcationl oo
N
N

N ~A
[ 2d CPN ~lsigma model] —
S1with twisted

~ . T° compactibcation

‘Conbnement at

‘weak coupling

boundary condition

Yang-Mills theory is put on Rime x T°
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Yang-Mills [3at connections

What are the states |Px! in Yang-Mills in the box T3 ?

Lowest energy states

v

Flat connectionson T°= S ! Sz ! St

[ Characterized by N! N matrices

(Ua,Ug,Uc) :Wilson lines

UA,B,C — eXp I All dxH
\_ SAB,C y
| 47




1-form center symmetry

Zn 1-form center symmetry

¥ 1-form symmetry acts on line operators like Wilson lines
(ordinary O0-formO symmetry acts on local operators)

¥ center symmetry is, roughly, the symmetry

U | eZ! I/N U
U : Wilson line
e ™ -in the center Zy of SU(N)
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Twist by 1-form symmetry

How can we implement twisted compactiPcation by
the 1-form center symmetry? (Ot Hooft,1979]

IOm going to give a rough explanation.
Please donOt care subtle details (because | donOt remember
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Twisted boundary condition by 1-form symmetry

Ug (xc +2!)= e "™ Ug(xc)
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Uc
f ............................ >f
_'4 ............... e
Xc =0 UC rc = 2!

Ug (27) = Uc Ug (0)U:

[ 47
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Twist

¥ Ug(2!)=¢e""N Ug(0)

¥ Us(2m)= UcUs (0)Uc™

Combining them and debning Ug = Ug (0) , we get

(" )
UcUg = €™ Ug Uc

UaUg = Ug Up

L UAUC — UCUA y

(The Ua have trivial commutation relations in our twist.)
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Classical vacua

Classical vacua are solutions of the commutation relations
up to gauge transformations:

4 _ )
UcUg = '™ UgUc

UA UB — UB UA

g UAUC — UCUA y

Algebra:  Uc may be regarded as Olowering operatorO

If UgV =€ then Ug(Uch)= €&'' 2 MW (Usv)
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Classical vacua

Solutions up to gauge transformation [Witten,1982]

Ug = dlag(l | eZ! I/N ,94! I/N )

Uc :(!i+1,j)

It turns out that N classical vacua are

(" )
Up = 2 kN «—> [P

\_ J
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ConbPnement

(" Debnition: )

conbnement «——Pp center symmetry unbroken
\ Y,

How about in our case?

(Part of) relevant gauge invariant operators:
tr(Ug ) = tr(Uc) =0
tr(Uy) = Ne? /N

The center symmetry Is broken by the nonzero
vacuum expectation value of tr(Ua) at each
classical vacua |Px!

[ 47



ConbPnement

P1 + 1 instanton
A—\ N
PN P
‘>J_r 1 Instanton
N
P3
~ N
Quantum vacua: |!! = e KNP 11 zZy
k=1
ITtr(Upa)|!'" =0  :conPnement
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Remarks

The center symmetry restoration itself is not surprising
because all the spatial directions are compactibed.

The points are:

¥ We realized it in completely weakly coupled regime

¥ Our results are expected to be continued to large volume
(assuming resurgence and mass gap)

¥ | will later discuss an example of center symmetry
breaking in the presence of fermions.
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Adjoint fermions

LetOs include fermions A in the adjoint representation.

Just for simplicity, in this talk | discuss the case of
a single adjoint fermion

— N=1 Super-Yang-Mills

Axial symmetry
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Axial current

Naive axial current JH 1 @ "HI

, 1 :
8HJ“ — N 816 ZtI'Fp! oy Gu! #
T

v

rConserved axial current
4 — M Z
L JH=JHI N &C&

CS : Chern-Simons
1 (CSH) =

16" 2tr FH! oy #J!"#
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Axlal charge

Axial charge: Q=  d®xJY
| |

= d*xI°1 N CS

_ K
P «—— C(CS= N mod 1
+ i Instanton
N

~ s
-----
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Axial charge

Q :debPned only modulo N (due to Chern-Simons)

e IN - well-dePned charge for discrete Z,n

(- . _ I
|Px! are eigenstates of the axial charge %' N

eZ! 1IQ/N ‘Pkl — eZ! Ik/N ‘Pk'
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Axial v.s. center symmetry

P! : eigenstates of axial charge

IN |
1= e *N|p. :eigenstates of
k=1 center symmetry (conbPnement)

In Hilbert space, there Is no simultaneous eigenstate of
the axial symmetry and the center symmetry!

One of them (or both of them) Is always

spontaneously broken.
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Thermal phase transition

Finite temperature scenario

[Komargodski-Sulejmanpasic-Unsal]

Shimizu-Yonekura
T :temperature [ !

Z°"" proken i _ Tcnira
H 7 &l hroken
Tdeconbne
(- )
Tdeconbne | Tchiral

LThe equality is possible only for 1st order transition y
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Remarks

¥ More deep reason behind it is a mixed anomaly
between axial and center symmetry

|Galotto-Kapustin-Seiberg-Willett]

¥ It is also possible to constrain phase transitions with
fermions In the fundamental representation
(massless QCD)). [Shimizu-Yonekura]

¥ For details, please see our paper
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Summary

2 A setup which is free from IR divergences
reproduce gqualitative features of conbnement in
Yang-Mills even at weak coupling regime.

2\Vacuum structure has rich phenomena such as

¥Nontrivial ! angle dependence of vacuum energy
¥Relation between conPnement and axial symmetry
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