2013年2月25日(月) 第9回ハドロンスクエア @ 理研

DAのNE加速器における K中間子水素原子X線精密分光実験

SIDDHARTA実験の結果 Phys. Lett. B 704 (2011) 113

K-He X線分光 -> 次世代K原子実験

岡田信二 理研

Slicon Drift Detector for Hadronic Atom Research by Timing Application

SIDDHARTA

SIDDHARTA Collaboration

LNF-INFN, Italy Univ. of Victoria, Canada Politecnico di Milano, Italy IFIN -HH, Romania Stefan Meyer Institut, Austria INFN Sez. di Roma I and Inst. Superiore di Sanita, Italy Univ. of Tokyo, Japan **RIKEN**, Japan Tech. Univ. München, Germany

SIDDHARTA Collaboration

M. Bazzi ^A, G. Beer ^B, L. Bombelli ^C, A.M. Bragadireanu ^{A,D}, M. Cargnelli ^E, G. Corradi ^A, C. Curceanu (Petrascu) ^A, A.d'Uffizi ^A, C. Fiorini ^C, T. Frizzi ^C, F. Ghio ^F, B. Girolami ^F, C. Guaraldo ^A, R. S. Hayano ^G, M. Iliescu ^{A,D}, T. Ishiwatari ^E, M. Iwasaki ^H, P. Kienle ^{E,I}, P. Levi Sandri ^A, A. Longoni ^C, V. Lucherini ^A, J. Marton ^E, S. Okada ^A, D. Pietreanu ^A, T. Ponta ^D, A. Rizzo ^A, A. Romero Vidal ^A, A. Scordo ^A, H. Shi ^G, D. L. Sirghi ^{A,D}, F. Sirghi ^{A,D}, H.Tatsuno ^G, A.Tudorache ^D, V.Tudorache ^D, O.Vazquez Doce ^A, E. Widmann ^E, J. Zmeskal ^E

INFN(LNF) ^A, Univ.Victoria ^B, Politecnico Milano ^C, IFIN–HH ^D, SMI ^E, INFN Sezione di Roma I and Istituto Superiore di Sanita' ^F, Univ.Tokyo ^G, RIKEN ^H,TUM ^I

Laboratori nazionali di Frascati (LNF-INFN)

Kaon

- K meson -

$$I(J^P) = \frac{1}{2}(0^-)$$

the lightest particle containing strange (anti-)quark

$$K^+ = u\overline{s}, \ K^0 = d\overline{s}, \ \overline{K}^0 = \overline{d}\overline{s}, \ K^- = \overline{u}\overline{s},$$

strange anti-quark strange quark

mass	493.677(16) MeV	ex) ~1000 times heavier than electron
lifetime	1.2380(21) x 10 ⁻⁸ sec	~ 12 nsec

What is Kaonic atom ?

Hydrogen atom

Kaonic hydrogen atom

Kaonic hydrogen atom

How we observe the strong interaction ?

X-ray spectroscopy

Kaonic hydrogen case

X-ray spectroscopy

Kaonic hydrogen case

X-ray spectroscopy

Kaonic hydrogen case

-> the shift and width are basic information of K^{bar}-N strong interaction at low energy limit.

U.-G. Meißner et al, Eur Phys J C35 (2004) 349

$$\epsilon_{1s} + i\Gamma_{1s}/2 = 2\alpha^3 \,\mu_r^2 a_{K^- p} \left[1 + 2\alpha \,\mu_r \left(1 - \ln \alpha \right) a_{K^- p} \right]$$

Shift WidthK-p scattering lengthKaonic hydrogen(= K-p scattering amplitude at threshold)Ka x-raycan be directly deduced.

QCD predictions

π-H system : successfully described by the chiral perturbation theory

but NOT with K-H system

due to the presence of $\Lambda(1405)$ resonance only 25 MeV below threshold

D

inconsistency between data and theory

Chiral SU(3) effective theory in combination with a relativistic coupled-channels approach

Strong elastic K-p amplitude

$$f_{K^-p\to K^-p}^{\text{str}} = 1/(8\pi\sqrt{s})T_{K^-p\to K^-p}^{\text{str}}.$$

previous data DEAR exp. ('95)

B. Borasoy, R. Nißler & W. Weise PRL 94, 213401 (2005)

Experimental Difficulty

Difficulty of KH measurement

Density-dependent yield due to Stark mixing

Low density gaseous hydrogen target
Low energy Kaon with small energy spread

70-80's : Kaonic hydrogen puzzle

1997 : The first distinct peak @ KEK

КрХ

2005 : Repulsive shift again @ LNF

G. Beer et al., PRL 94, 212302 (2005)

Kaonic hydrogen : Shift vs. Width

Kaonic hydrogen : Shift vs. Width

X-ray detector

Silicon Drift Detector - SDD

Silicon Drift Detector - SDD

inside the detector
Silicon Drift Detector - SDD

	KpX, 1998	DEAR, 2005	SIDDHARTA
Detector	Si(Li)	CCD	SDD
Energy Resolution	360 eV	<u>180 eV</u>	<u>150 eV</u>
Thickness	sub 10 mm	<u>sub mm</u>	<u>sub mm</u>
Effective area	120 cm ²	116 cm ²	114 cm ²
Time resolution	sub <u>µ</u> sec	~ 30 sec	sub <u>µsec</u>
Efficiency @ 6keV	<u>~ 100 %</u>	~ 60 %	~ 100 %

Silicon Drift Detector - SDD

DAFNE : e- e+ collider

DAFNE : e- e+ collider

$\Phi \rightarrow \mathbf{K}^{-} \mathbf{K}^{+} (49.1\%)$

Monochromatic low-energy K⁻ (~127MeV/c)
 Less hadronic background due to the beam
 (compare to hadron beam line : e.g. KEK)

Suitable for Kaonic atom exp.

Experimental Setup

SIDDHARTA setup

SDDs & Target (inside vacuum)

Kaon detector

Kaon detector

Silicon Drift Detectors

1 cm² x 144 SDDs

Kaon identification

Timing on SDDs

Energy vs. Timing on SDDs

K-p and K-d spectra

K-p and K-d spectra Cascade calculation

Koike et al., PRC53(1996)79

 $C_{22}H_{10}O_5N_2$

K-d K-D 100 8 101 8 K⁻-p K line X-ray yield per stopped K⁻ K⁻-d K line per stopped K⁻ 10⁰ K_{all} Kall 0.87% 10 8.3% Kα 10^{-1} $\lambda_{10}^{\rm reld}$ K Veray 10 0.1 10⁰ 10^{-1} 10^{3} 10^{1} 10^{2} 10⁰ 10^{-1} 10² 10 10^{1} 10^{3} 10 target density (ρ_{stp}) target density (ρ_{stp}) 6 STP Ka/Kall ~ 15% 6 STP Ka/Kall ~ 5.8%

Kaonic Kapton X-rays

FIG. 5. Density dependence of K^- -p atom x-ray yields with varying $(\delta E_{1s})_{\text{strong}}$ and Γ_{1s}^{abs} . The solid lines and the dashed lines are the cases which suffer the strongest (Conboy *et al.* [10]) and the weakest (Tanaka and Suzuki [11]) Stark effects among the parameters given in Table I, respectively. The other cases in Table I lie between these lines. The width Γ_{2p}^{abs} is taken to be 1 meV. The free parameter k_{stk} is fixed to 2.0.

FIG. 10. Density dependence of K^- -d atom x-ray yields with varying the strong-interaction parameters. The solid lines are the case of Martin's K matrix + Fermi average + binding effect. The dashed lines are for Batty's optical potential.

~ 1/10 yields

Residuals of K-p x-ray spectrum after subtraction of fitted background

Systematic error of KH shift & width

- \checkmark SDD rate dependence
- \checkmark ADC linearity
- ✓ SDD response function <- dominant for shift
- ✓ Possible Kaonic deuterium x-rays
- ✓ Kaonic atom lines overlapped with KH x-rays
 - (<-- including in the statistical error)
- \checkmark Distribution of KH higher transitions
- ✓ Energy resolution (constant noise) <- dominant for width</pre>

Result

Result

With a recent theoretical value

Conclusion

reached a quality which will demand refined calculations of the low-energy KN interaction

K-p amplitude

K-p scattering length by SIDDHARTA

U.-G. Meißner et al, EPJ C35 (2004) 349

$$\Delta E - i\Gamma/2 = -2\alpha^{3}\mu_{r}^{2}a(K^{-}p)[1 + 2\alpha\mu_{r}(1 - \ln\alpha)a(K^{-}p)],$$
scattering
length
by **SIDDHARTA** Re $a(K^{-}p) = -0.65 \pm 0.10$ fm,
Im $a(K^{-}p) = 0.81 \pm 0.15$ fm,

Y. Ikeda et al, NPA 881(2012)98 $a(K^{-}p) = -0.93 + i0.82 \text{ fm (TW)},$ now fully $a(K^{-}p) = -0.94 + i0.85 \text{ fm (TWB)},$ compatible $a(K^{-}p) = -0.70 + i0.89 \text{ fm (NLO)}.$

However ...

$$a(K^-p) = [a_0 + a_1]/2$$

average of I=0 and I=1 components

Future experiment

Kaonic deuterium measurement

Now a precise KH data is available; however ...

 $\begin{array}{rcl}
 \text{impulse approximation term} \\
 a_{K^-p} &=& \frac{1}{2}[a_0 + a_1] \\
 a_{K^-n} &=& a_1
\end{array}$ $\begin{array}{rcl}
 \text{impulse approximation term} \\
 a_{K^-m} &=& \frac{4[m_N + m_K]}{[2m_N + m_K]} \cdot a^{(0)} + C \\
 a^{(0)} &=& \frac{1}{2}[a_{K^-p} + a_{K^-n}] = \frac{1}{4}[a_0 + 3a_1]
\end{array}$

with one order better S/N

proposed new operation scheme

Feature

Larger acceptance (changing geometry)
Higher target gas density (new cryostat system)
Discrimination of K+ (new detector)
Active shielding (anti-coincidence counter)
Better SDD time resolution (lower temperature)

Summary

✓ measured Kaonic x-ray spectra with several gas targets Z=1&2:

► K-p : provided the most precise values (PLB704(2011)133)

 $\epsilon_{1s} = -283 \pm 36(\text{stat}) \pm 6(\text{syst}) \text{ eV}$ $\Gamma_{1s} = 541 \pm 89(\text{stat}) \text{ eV} \pm 22(\text{syst}) \text{ eV}$

K-d : first-time "exploratory" measurement -> small signal (large width)

- ► K-³He (L-series) : <u>first-time measurement</u> (PLB697(2011)199)
- ► K-4He (L-series) : measured in gaseous target for the first time (PLB681(2009)310)
- ✓ future experiment : Kaonic deuterium @ SIDDHARTA-2

Kaonic helium

Kaonic helium

Z=1

K-hydrogen

K-helium

2p-1s x-ray

~ 6 keV

3d-2p x-ray

 $\sim 6 \text{ keV}$

Kaonic helium puzzle ...

Theories

SIDDHARTA

accumulating data

a few days

Summary of Kaonic helium results

Summary of Kaonic helium results

Next-generation K-atom exp.

Next-generation K-atom exp.

-> small acceptance

Why Microcalorimeter ?

1. Possibility of large acceptance

- Multi device (Array)
- Large absorber

2. High mobility available only short term of OCCUPANCY (at J-PARC, DAΦNE etc.)

Energy resolution @ 6 keV (FWHM)

difficult to determine

the energy and width

with $\sim eV$ order

Energy resolution @ 6 keV (FWHM)

Energy resolution @ 6 keV (FWHM)

X-ray microcalorimeter

a thermal detector measuring the energy of an incident x-ray photon as a temperature rise

e.g., Absorber : Au (0.3 mm×0.3 mm wide, 300 nm thick) Thermometer : thin bilayer film of Ti (40nm) and Au(110 nm) Temperature rise = E / C (~ 1 mK)

Decay time constant = C / G (\sim 100 µs)

Absorber size : e.g., $0.2 \times 0.2 \text{ [mm^2]}$...

TES microcalorimeter

TES = Transition Edge Sensor

--> using the sharp transition between normal and superconducting state to sense the temperature.

Energy resolution ~ I eV at most

(Johnson noise and phonon noise are the most fundamental.)

started the investigation

funding status

- got a small research fund in RIKEN for R&D
- applying another funding now...

enhancing partnerships

- RIKEN (Tamagawa-lab.: Dr.Yamada)
- Tokyo Metropolitan University (Ohashi-lab.)
- NIST

NIST microcalorimeter

NIST's standard TES sensor 350 x 350 µm², 160 array --> ~20 [mm2] (2~3 eV (FWHM)@ 6 keV) (4~5 eV (FWHM)@ 10 keV) (6~8 eV (FWHM)@ 15 keV)

60 kW operation :

K-He La 3-days data acquisition : 300 events K-C 5-4 (K-mass) 7-days data acquisition : 7000 events

Kaon mass measurement

"Assuming K-C 5-4 yield = K-He La yield x 10", --> ~ 7000 [events/1week] with NIST MC array whose resolution is 4~5 eV (FWHM)@ 10 keV. --> $\Delta E = 4 / 2.35 / sqrt(7000) \sim 0.02$ [eV]

 ΔE (for x-ray energy) ~ 0.02 [eV] --> Δm (for K- mass) ~ <u>1 [keV]</u>

will improve <u>one order</u> of magnitude in accuracy of K-mass (~ I month data accumulation w/60kW)

- K-Helium and K⁻ mass -

✓ measured Kaonic helium x-ray spectra :

► K-³He (L-series) : <u>first-time measurement</u> (PLB697(2011)199)

► K-⁴He (L-series) : measured in gaseous target for the first time (PLB681(2009)310)

 \checkmark get started to investigate the next-generation of K-atom exp.

 \checkmark TES Microcalorimeter : high mobility and a large acceptance

 \checkmark open new door to investigate K-nucleus strong interaction

 \checkmark provide new accurate charged kaon mass value, which would be the first measurement in this project

Thank you