Direct-Photon A_{N}

July 08, 2013
Imran Younus

Lahore University of Management Sciences

Asymmetry Calculation

Direct-Photon Yields (from ppg136, eq. 7):

$$
\begin{aligned}
& N_{d i r}^{i s o}=N_{\text {incl }}^{\text {iso }}-\left(n_{\pi^{0}}^{\text {iso }}+R N_{\pi^{0}}^{\text {iso }}\right)-A^{i s o}(1+R) N_{\pi^{0}}^{\text {iso }} \\
& N_{\text {dir }}^{\text {iso }}=\underbrace{\left(N_{\text {incl }}^{\text {iso }}-n_{\pi^{\circ}}^{\text {iso }}\right)}_{N_{\text {incl }}}-\underbrace{\left[R+A^{\text {iso }}(1+R)\right] N_{\pi^{i s o}}^{\text {iso }}}_{N_{\text {bgr }}}
\end{aligned}
$$

$n_{\pi^{0}}^{\text {iso }} \quad$ Photons which have a partner photon reconstructed in the EMCal acceptance.
$N_{\pi^{0}}^{\text {iso }}$ Photons which satisfy the isolation criteria if the partner photon is masked out.
$A_{N}=\frac{1}{P}\langle f(\varphi)\rangle \frac{\left(N^{\uparrow \uparrow}+R_{1} N^{\uparrow \downarrow}\right)-\left(R_{2} N^{\downarrow \uparrow}+R_{3} N^{\downarrow \downarrow}\right)}{\left(N^{\uparrow \uparrow}+R_{1} N^{\uparrow \downarrow}\right)+\left(R_{2} N^{\downarrow \uparrow}+R_{3} N^{\downarrow \downarrow}\right)}$
$R_{1}=\frac{L^{\uparrow \uparrow}}{L^{\uparrow \downarrow}}, \quad R_{2}=\frac{L^{\uparrow \uparrow}}{L^{\downarrow \uparrow}}, \quad R_{3}=\frac{L^{\uparrow \uparrow}}{L^{\downarrow \downarrow}}$
$\langle f(\varphi)\rangle=\langle | \sin (\varphi)| \rangle^{-1}=\frac{N}{\sum_{i=0}^{N}|\sin (\varphi)|}$
NOTE: φ is measure from polarization axis.

Physics Asymmetry:

$$
\begin{aligned}
& A_{N}=\frac{A_{N}^{\text {incl }}-r A_{N}^{b k g r}}{1-r} \\
& \delta A_{N}=\frac{\sqrt{\left(\delta A_{N}^{\text {incl }}\right)^{2}+r^{2}\left(\delta A_{N}^{b k g}\right)^{2}}}{1-r}
\end{aligned}
$$

$$
r=\frac{N_{\text {bkgr }}}{N_{\text {incl }}}=\left[R+A^{\text {iso }}(1+R)\right] \frac{N_{\pi^{0}}^{\text {iso }}}{N_{\text {incl }}^{\text {iso }}-n_{\pi^{0}}^{\text {iso }}}
$$

CutS

> The analysis follows the same method established in ppg136.
> Direct photon candidates are tagged using isolation cut.
> PDST for the analysis were produces using AnalysisTaxi 256.
Mainly the cuts used are the same as those used for cross-section measurement.
Photons:

- Shower shape cut. (prob > 0.02)
- Minimum Energy: 0.5 GeV for partner photons; 0.15 for Econe calculation
- ToF: -5 to 10
- ERT is required.
- Charge Veto (by comparing TowerID of photon cluster to TowerIDs of Tracks)

Tracks (for Econe calculation)

- PC3 or EMC matching
- Track quality > 3
- Track pt <15

EMCal warn map

Photon from piO decay

$$
N_{\text {dir }}^{\text {iso }}=\left(N_{\text {incl }}^{\text {iso }}-n_{\pi^{i}}^{\text {iso }}\right)-\left[R+A^{\text {iso }}(1+R)\right] N_{\pi^{i}}^{\text {iso }}
$$

I'm subtracting the combinatoric background using average of counts
in the two side bands (above and below mass peak).

Photon Yields

$$
N_{d i r}^{i s o}=\left(N_{\text {incl }}^{\text {iso }}-n_{\pi^{0}}^{i s o}\right)-R N_{\pi^{0}}^{i s o}
$$

Acceptance Function

Φ is measure from beam polarization direction. I've taken into account the shift in blue beam pol direction. 0.24 rad. For these plots: $5<\mathrm{pT}$ (photons) < 15 .

$$
A_{N}^{\text {incl }}=\frac{1}{P}\langle f(\varphi)\rangle \frac{\left(N^{\uparrow \uparrow}+R_{1} N^{\uparrow \downarrow}\right)-\left(R_{2} N^{\downarrow \uparrow}+R_{3} N^{\downarrow \downarrow}\right)}{\left(N^{\uparrow \uparrow}+R_{1} N^{\uparrow \downarrow}\right)+\left(R_{2} N^{\downarrow \uparrow}+R_{3} N^{\downarrow \downarrow}\right)}
$$

$$
A_{N}^{\text {incl }}=\frac{1}{P}\langle f(\varphi)\rangle \frac{\left(N^{\uparrow \uparrow}+R_{1} N^{\uparrow \downarrow}\right)-\left(R_{2} N^{\downarrow \uparrow}+R_{3} N^{\downarrow \downarrow}\right)}{\left(N^{\uparrow \uparrow}+R_{1} N^{\uparrow \downarrow}\right)+\left(R_{2} N^{\downarrow \uparrow}+R_{3} N^{\downarrow \downarrow}\right)}
$$

$$
A_{N}^{\text {incl }}=\frac{1}{P}\langle f(\varphi)\rangle \frac{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}-\sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}+\sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}
$$

$$
A_{N}^{b k g r}=\frac{1}{P}\langle f(\varphi)\rangle \frac{\left(N^{\uparrow \uparrow}+R_{1} N^{\uparrow \downarrow}\right)-\left(R_{2} N^{\downarrow \uparrow}+R_{3} N^{\downarrow \downarrow}\right)}{\left(N^{\uparrow \uparrow}+R_{1} N^{\uparrow \downarrow}\right)+\left(R_{2} N^{\downarrow \uparrow}+R_{3} N^{\downarrow \downarrow}\right)}
$$

PiO miss ratio: R

Implemented Single particle Monte Carlo
$R=\frac{N_{\pi^{0}}^{1 \operatorname{tag}}}{N_{\pi^{0}}^{2 t a g}}=\frac{N_{\pi^{0}}^{\gamma}-N_{\pi^{\circ}}^{2 t a g}}{N_{\pi^{0}}^{2 \text { tag }}}$
$N_{\pi^{0}}^{1 t a g}$
no. of piOs where one photon falls inside active region (excluding guard veto), and 2nd photon is missed.
$N_{\pi^{0}}^{2 \text { tag }}$ no. of piOs where both photons are detected.
$N_{\pi^{0}}^{\gamma} \quad$ no. of piOs where one photon falls inside active region (excluding guard veto), regardless of what happens to the 2nd one.

EMCal warn map is implemented in monte carlo

| $\mathbf{N}_{\pi^{0}}^{\gamma} \mathbf{N O}$ |
| ---: | :--- |

PiO miss ratio: R

After $\sim 13 \mathrm{GeV}$, effect of photon merging become significant. I haven't implement shower merging in my monte carlo yet.

Physics Asymmetry

Hadronic background (other than pi0) is not subtracted yet.

Summary

- Run QA is done.
- Spin QA is done.
- EMCal warn map is determined.
- Inclusive and background asymmetries are calculated.
- Need to implement shower profile in MC to correctly estimate R.
- $A^{i s o}$ needs to be calculated.
- Bunch shuffling.

Backup

φ and $|\sin (\varphi)|$

$$
A_{N}^{b k g r}=\frac{1}{P}\langle f(\varphi)\rangle \frac{\left(N^{\uparrow \uparrow}+R_{1} N^{\uparrow \downarrow}\right)-\left(R_{2} N^{\downarrow \uparrow}+R_{3} N^{\downarrow \downarrow}\right)}{\left(N^{\uparrow \uparrow}+R_{1} N^{\uparrow \downarrow}\right)+\left(R_{2} N^{\downarrow \uparrow}+R_{3} N^{\downarrow \downarrow}\right)}
$$

Archeology of $A^{i s o}$

From PHENIX AN460 (Table 3)

Particle	Production ratio	Branching ratio	γ ratio $\left(=A_{0}-1\right)$
η / π^{0}	0.45 ± 0.1	$\frac{B r(\eta \rightarrow 2 \gamma)}{B r\left(\pi^{0} \rightarrow 2 \gamma\right)}=39.4 / 98.8$	0.18 ± 0.04
ω / π^{0}	1.0 ± 0.3	$\frac{B r\left(\omega \rightarrow \pi^{0} \gamma\right)}{B r\left(\pi^{0} \rightarrow 2 \gamma\right)} \times \frac{1}{2}=8.9 / 98.8 * 1 / 2$	0.045 ± 0.014
η^{\prime} / π^{0}	0.25 ± 0.08	$\frac{B r\left(\eta^{\prime} \rightarrow 2 \gamma\right)}{B r\left(\pi^{0} \rightarrow 2 \gamma\right)}=2.1 / 98.8$	0.0053 ± 0.0017
Sum	-	-	0.23 ± 0.05

PHENIX Eta cross section paper measured $0.51+/-0.01$

Modified to 0.237 in Kensuke's code

