Spinfest Student session I

Jeongsu Bok New Mexico State University 2013/07/03, RIKEN

Introducing myself

never

Born in Inchon, South Korea, Grown in Seoul Enjoyed physics, nourished soul

okxxxx

ocation

escription

06학번복정수

과319 NuclearPhysicsLAB

./submit_delete.sh mybrain

Taebong entered Yonsei Univ

Unrated

ast Game: Never Played

870/1000

Record: 0/0

Inranked

Disconnects: 0

Introducing myself

MS degree, Yonsei Univ, Seoul

- Nuclear Physics Group
 - Linux cluster management (from credit card to data)
 - FoCal work (beam test, simulation...)
 - Single muon analysis (AuAu decay muon)

Introducing myself

Grad. Study, New Mexico State Univ
 Nuclear and Particle Physics Group
 3 prof. 1 postdoc, 3 student and more.
 Spin & FVTX

I've been working on

♦ FVTX hardware Test sensor, module bending, assembly ♦ Analysis Open heavy flavor with FVTX Run12 pp 510GeV (first FVTX pp data) Background rejection, c/b separation Single muon analysis

PHENIX Forward Muon Spectrometer

1. Absorbed : $(e^{\pm}, \gamma, p, \pi, K...)$ 2. Stopped hadron: (π, K) 3. Decay muon: $(\pi^{\pm} \rightarrow \mu^{\pm} + X, K^{\pm} \rightarrow \mu^{\pm} + X)$ 4. Punch through : hadron (π^{\pm}, K^{\pm}) 5. prompt muon: $(B, D \rightarrow \mu + X)$

 Previous heavy-quark production measurements studied indirectly via the measurement of leptons(muons) from semileptonic decays of charm or beauty

 without distinguishing between Dand B-mesons
 in large systematic errors (backgrounds (π->μ and K-> μ)

D, B mesons travel ~1 mm (with boost) before semi-leptonic decay to muons
By measuring DCA to primary vertex, We can separate D and B from long-lived decays like n, K
Muons from D, B mesons have different DCA shape

overwhelm the signal)

Displaced Vertex, DCA_R

PTA DCA D0 DCA Reconstructed Vertex (X_0, Y_0) Vertex

DCAR (Distance of Closest Approach, R)
 : reconstructed vertex decomposed on muon pT direction (FVTX has better resolution onto R direction)

$$DCA_{R} = X_{0} \times (\frac{P_{x}}{P_{T}}) + Y_{0} \times (\frac{P_{y}}{P_{T}})$$

• Flying distance and decay angle of muons from π ,K decay, muons from D and B and prompt muon will give us different DCAR distributions

Particle	Mean lifetime (ps)	Decay length(mm) at p=3 GeV
π±	2.60 x 10 ⁴	167 x 10 ³
Κ±	1.24 x 10 ⁴	22.9 x 10 ³
D ⁰	0.410	0.197
B ⁰	1.530	0.261

DCAR p+p 510GeV simulation

Blue : 50 mil B events Red : 900mil D events

DCAr Background simulation

Deeply Penetrating MUID Gap4

Penetrating Muons Gap4

 $\pi \pm$ input ($\pi \pm$,K \pm major source of background)

Magenta : Deeply penetrating muon, hadron Red : Decay muon from $\pi \pm$ Blue : hadrons penetrating front absorber

One of the major source of background, decay muon from hadron have broad DCAR distribution DCAR background π^{\pm}

10⁴

10

3.5 GeV

190mil $\pi \pm$ generation

Blue : stopped hadron magenta : deeply penetrating (decay muon including punch-through)

<u>X axis is (-5cm, 5cm)</u> \rightarrow DCAR($\pi \pm$) >> DCAR(B,D)

Single muon analysis

♦ pp 510 GeV open heavy flavor without FVTX

- Baseline of c/b separation
- Signal extraction step is openHF->c/b separation
- No previous openHF measurement at forward rapidity 500GeV
- B dominent area in Higher pT (with enough statistics)

510GeV data is first significant p+p data with FVTX, runn12 pp 200GeV doesn't have.
 Will compared with the data with FVTX this fall.

Method is well-established, Run5pp, CuCu, run9pp, run8dAu

 \diamond A_{LL}?

Thank you

backup

c/b separation

Training sample (D, B, Background(punch-through, decay muon)

 DCA_R distribution of μ from D meson

 DCA_R distribution of μ from B meson

 DCA_R distribution of μ from Background

Itrate until difference converges

Merge distributions and Fit to the target distribution with random weight D/B/BG ratio of muon

Extract meson pT

Before iteration

After 30 iterations

b/(c+b) ratio

finding proper weight which forms merged distribution with
enough iteration,
→signal/(signal+bg)
→b/(c+b) ratio gets close to actual input