

Introducing my work at the Phenix SpinFest 2013

Background reduction using FVTX for W study

Abraham Meles New Mexico State University 3-Jul-13

Ethiopia

Axum ~ 3000 years

Motivation

- Spin dependent quark distribution → by the QCD analysis of (SI)DIS data
- Polarized Parton distribution function (pPDF)
- $\Delta q(x)$: well known,
- $\Delta \overline{q}(x)$: not well known
- →also, the Weak Interaction
 (flavor selection coupling) can be used to constrain sea quark
 distribution.

DSSV Global Fit -- arXiv:1112.0904v1 [hep-pł., _ _ _ _

PH*ENIX W Single Spin Asymmetry

- We measure Parity-violating longitudinal single spin asymmetries (A_L) in $W \rightarrow \mu$ production during *pp* collisions.
- *A_L*'s are sensitive to the polarized sea quark distribution

$$A_L^{l^+} = \frac{\Delta \bar{d}(x_1)u(x_2)(1+\cos\theta)^2 - \Delta u(x_1)\bar{d}(x_2)(1-\cos\theta)^2}{\bar{d}(x_1)u(x_2)(1+\cos\theta)^2 + u(x_1)\bar{d}(x_2)(1-\cos\theta)^2}$$

$$A_L^{l^-} = \frac{\Delta \bar{u}(x_1) d(x_2) (1 - \cos \theta)^2 - \Delta d(x_1) \bar{u}(x_2) (1 + \cos \theta)^2}{\bar{u}(x_1) d(x_2) (1 - \cos \theta)^2 + d(x_1) \bar{u}(x_2) (1 + \cos \theta)^2}$$

where Θ is the lepton decay angle in the partonic center-of-mass system,

PHENIX Forward Muon Spectrometer

PH^{*}ENIX Silicon Forward Vertex Detector (FVTX)

- In 2012 pp collision
- PHENIX recorded integrated luminosity of 30 (pb)⁻¹ |z| < 30 cm vertex.
- Over 90% of FVTX operational during 510 GeV p-p

- FVTX covers $1.2 < |\eta| < 2.4$, $2\pi \text{ in } \phi$
- Each arm contains 4 discs, Each disc contains 9 "wedges" made of Silicon mini-strips.
- 1.1 Million strips (75 μ m pitch in radial, 3.75° in ϕ

The life of a wedge

PH $\overset{\checkmark}{\times}$ ENIX W \rightarrow muon at forward W Measurement

MuTr/MuID and RPC variables on background rejection studied in run11 analysis (an1024)

0.900 percent distribution μ⁺ above 10.00 GeV z cut 0.900 percent rel yield w cut 0.900 percent 1 z+jet cut 0.900 percent w+jet_cut 0.900 percent singlemu cut 0.900 percent 0.8 0.6 0.4 0.2 cut sdate (MC) wiz + u RG 10 dMC3 wiz data - iwiz + _u BGi 10

10³ 10³ 10⁴ 1 In this talk -MuTr/MuID and FVTX - MuTr/MuID + RPC and FVTX variables on background rejectionwith S/B

• Data Set

- Run12pp510Muon set (almost all data) taxi <u>1264</u>
- Simulation: MC (w signal + μ BGs) produced by Ralf /direct/phenix+user02/phnxreco/Wsims_Ralf/run12sim/muonsi ms/simdata/pytune100_367593/old2
- FVTX Observables for W analysis
 - FVTX provide additional separation of W-signal and background. Therefore, improve the estimation for S/B ratio and systematic uncertainty (preliminary: acceptance, efficiency, rejection)
 - Multi-vertex finder. Active work on-going by M. McCumber and C. Da Silva (acpt: |z|<50 cm, eff. >80% w/ two blind spot)
 - Joint FVTX MuTr track matching and fit (<acpt>~20%, eff. ~ 90%, rej. ~ 2x)

This talk

 Isolation-cone observables (Jin Huang) (acpt: |z|<10 cm, eff. ~60%)

initial Strategy

- Identify good track matching variables of MuTr and FVTX using signal simulation at reco pT 10 GeV/c.
 - DG0, DDG0, Δ $φ_{12}$, Δ $φ_{23}$,chi2, dca_r (mutr),
 - $\Delta r_fvtx / \Delta \theta_fvtx / \Delta \phi_fvtx$: radius/theta/phi residual btw. MuTr and FVTX track at Z=+/-40cm
 - RPC1 DCA, RPC3DCA,
 - chi2fvtxmutr, dca_fvtx
 - Isolation cut
- Develop selection criteria that keep 99.5%, 97%, 95% and 90% of signal for each variable at 10 GeV/c.
- Apply it for high pT(>10 GeV/c);
 - On W candidate single muons (w,z, openbottom, z+jet, w+jet....).
 - On background simulation and real data.

*Green font DONE, red in progress

South Minus

SuccesiveCuts_from_w_z_openbottom_real_South_minus_90%

12

South Minus

Transverse Momentum Distribution

Define likelihood for sig/BGs
λ=p(DG0,DDG0)p(chi2)p(DCA_r)p(Rpc1/3dca)
Cut parameter for pre-selection: f > f_cut f = _____

$$\equiv \frac{\lambda_{\text{sig}}}{\lambda_{\text{sig}} + \lambda_{\text{BGs}}}$$

Liklihood study

- code-with help of Feng Wei
- -testing our code

-Start with the DG0-DDG0, chi2, DCA_r, Min of RPC1 and RPC3 dca-> cross check output with Ralf group -> Add FVTX variables

Progress (unbinned maximum likelihood fit)

Process of unbinned maximum likelihood fit:

W signal simulation

W signal simulation

W signal simulation

W signal simulation- rpc3dca (but in data they agree)

Data-W ness, sig?

Summary and outlook

- MuTr/MuID/RPC/FVTX matching variables study for:
 - DG0, DDG0, chi2, dca_r, $\Delta \varphi_{12}$, $\Delta \varphi_{23}$, RPC1 DCA OR RPC3 DCA, Δr_fvtx , $\Delta \theta_fvtx$, $\Delta \varphi_fvtx$
- Inprogress
 - Isolation cut
 - W Likelihood ratio (based on several agreed Variables) as pre-selection
 - Crosscheck with forward analysis group
 - More work during spinfest

PH^{*}ENIX</sup> Observing Heavy Quarks Production.

The most common mechanism is "gluon-gluon fusion" -- a gluon from each proton contributes to an "open box" diagram involving a quark and an anti-quark.

Heavy quark pair (Q = c or b)

Then, there are two possible general outcomes:

(1) The quark pair combines to form a single meson. "Closed heavy flavor" E.g. $c + \overline{c} \rightarrow J/\psi \rightarrow \mu + \overline{\mu}$

This meson decay is electromagnetic and so is very fast. $\tau \approx 10^{-20}$ s $c\tau \approx 10^{-10}$ cm (2) The individual quarks fragment to form heavy mesons. "Open heavy flavor" E.g. $c \rightarrow D \rightarrow \mu + X$

This is a weak meson decay and so is slow. $\tau \approx 10^{-12}$ s $c\tau \approx 10^{-2}$ cm

First $W^{\pm} \rightarrow m^{\pm}$ **Single Spin Asymmetry at Forward Rapidity**

FVTX will make big contribution on background reduction for |z| < 10cm!

Xiaorong Wang, RBRC, June, 2012

- Parton distribution function (pdf)--probability of scattering off of a parton carrying a particular fraction of the proton's momentum
- *Polarized* pdf--the *difference in probability* between scattering off of a parton with one spin state vs. the other
 - Still as a function of the momentum fraction ("Bjorken-x")

Magenta

