Brazed Molybdenum Targets for Cyclotron Production of Technetium-99m[‡]

S.K. Zeisler^{a,*}, V. Hanemaayer^a, K.R. Buckley^a, B.K. Hook^a, S. McDiarmid^a, M. Dodd^a, J. Corsaut^b, M. Kovacs^b, N. Cockburn^b, C. Economou^c, Ross Harper^c, J.F. Valliant^c, J. Klug^d, F. Bénard^d, T.J. Ruth^a, P. Schaffer^a

^aTRIUMF, Vancouver BC, Canada; ^bLawson Health Research Institute (LHRI), London ON, Canada ^cCentre for Probe Development and Commercialization (CPDC), McMaster University, Hamilton ON, Canada ^dBritish Columbia Cancer Agency, Vancouver BC, Canada

Introduction

Technetium-99m, supplied in the form of ⁹⁹Mo/^{99m}Tc generators, is the most widely used radioisotope for nuclear medical imaging. The ⁹⁹Mo parent is currently produced in nuclear reactors. Recent disruptions in the ⁹⁹Mo supply chain [1] prompted the development of methods for the direct accelerator-based production of ^{99m}Tc.

Our approach involves the ¹⁰⁰Mo(p,2n)^{99m}Tc reaction on isotopically enriched molybdenum using small medical cyclotrons ($E_p \leq 20$ MeV), which is a viable method for the direct production of clinically useful quantities of ^{99m}Tc [2].

Multi-Curie production of ^{99m}Tc requires a ¹⁰⁰Mo target capable of dissipating high beam intensities [3]. We have reported the fabrication of ¹⁰⁰Mo targets by electrophoretic deposition and sintering [4]. As part of our efforts to further enhance the performance at high beam intensities, we have developed an improved target system (initially designed for the GE PETtrace cyclotron) based on a pressed and sintered ¹⁰⁰Mo plate brazed onto a dispersion-strengthened copper backing.

Materials and Methods

In the first step, a molybdenum plate is produced similarly to the method described in [5] by compacting approximately 1.5 g of ¹⁰⁰Mo powder using a cylindrical tool of 20 mm diameter. A pressure between 25 kN/cm² and 250 kN/cm² is applied by means of a hydraulic press.

The pressed molybdenum plate is then sintered in a reducing atmosphere $(Ar/2\% H_2)$ at 1,700 °C for several hours. The resulting ¹⁰⁰Mo plates have about 90-95% of the bulk density of molybdenum.

The ¹⁰⁰Mo plate is furnace brazed at ~750 °C onto a backing manufactured from a dispersion strengthened copper composite (e.g. Glidcop AL-15) using a high temperature silver-copper brazing filler.

This process yields a unique, mechanically and thermally robust target system for high beam power irradiation.

Figure 1. Brazed Mo-Cu Target Disc for GE PETtrace Cyclotron

Production tests were performed on the GE PETtrace cyclotrons at LHRI and CPDC with 16.5 MeV protons and beam currents \geq 100 µA. Targets were visually inspected after a 6 hour, 130 µA bombardment (2.73 kW/cm², average) and were found fully intact. Up to 4.7 Ci of ^{99m}Tc have been produced to date. The saturated production yield remained constant between 2 hour and 6 hour irradiations.

Results and Conclusion

These results demonstrate that our brazed target assembly can withstand high beam intensities for long irradiations without deterioration. Efforts are currently underway to determine maximum performance parameters.

References

- 1. T. J. Ruth: Nature 457, 536-537 (2009)
- S.M. Qaim, S. Súdar, B. Scholten, A.J. Koning, H.H. Coenen: Appl. Radiat. Isot. 85, 101-113 (2014)
- F. Bénard, K. R. Buckley, T. J. Ruth, S.K. Zeisler, J. Klug et al.: *J. Nucl. Med.* 55, 1-6 (2014)
- V. Hanemaayer, F. Bénard, K.R. Buckley, J. Klug, M. Kovacs et al.: J. Radioanalyt. Nucl. Chem. 299, 1007-1011 (2014)
- 5. K. Gagnon: *Cyclotron Production of Technetium-99m.* PhD Thesis, University of Alberta (2012)

Acknowledgments

Funding for this work was provided by Natural Resources Canada under the NRCAN-ITAP program.