Nickel-Backed Bi Targets for the Production of ²¹¹At

John P. Greene, Jerry Nolen and Sam Baker

Physics Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 USA

ABSTRACT

To support clinical trials for cancer therapy with radiotherapeutic isotopes in the United States reliable sources of adequate quantities of several such isotopes, especially of alpha emitters such as ²¹¹At, are a high priority of the DOE Isotopes Program. The isotope ²¹¹At (half-life 7.2 hours) is usally produced via ²⁰⁹Bi(α , 2n)²¹¹At using a 28 MeV alpha beam. We have recently tested an alternative reaction, ²⁰⁹Bi(⁶Li, 4n)²¹¹Rn (which decays to ²¹¹At) with a 42 MeV ⁶Li beam from the ATLAS superconducting linac. This latter reaction has the advantage that radon gas is easy to extract and the 14-hour ²¹¹Rn half-life allows more time for transport to the therapy facility.

The Bi targets were prepared on a Ni backing as these elements have similar coefficients of thermal expansion, minimizing the chance of target delamination. The nickel backing was mounted in contact with a Cu heating plate assembly to help assist evolution of the Rn gas. A helium gas jet was passed in front of the target to collect the ²¹¹Rn and transport it to a charcoal trap. In the near future we will test the release efficiency of noble gases from Bi as a function of temperature using a stable Xe beam and a highly sensitive residual gas analyzer. Details of the Bi target production and performance will be presented as well as some initial experimental results.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

*This work was supported by the U.S. Department under Contract No. DE-AC02-06CH11357