Development of a liquid ³He target system for experimental studies of antikaon-nucleon interaction at J-PARC

<u>M. Sato^{1#}</u>, M. Iio², S. Ishimoto², S. Enomoto², T. Hashimoto¹, S. Suzuki², M. Iwasaki^{1,3} and R.S. Hayano⁴

¹RIKEN Nishina Center, RIKEN, Saitama 351-0198, Japan
²High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801, Japan
³Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
⁴Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan

a corresponding author: E-mail m-sato@riken.jp

We have successfully developed a liquid ³He target system for two experiments at the J-PARC hadron facility; an x-ray spectroscopy of kaonic helium [2] and a search for antikaon nuclear bound states [3]. In these experiments we need to measure secondary charged particles from the ³He target by a cylindrical detector system with a large solid angle. We adopted an L-shape cryostat to separate the target cell away from main cryogenic components, such as a heat exchanger and a ⁴He evaporator. A total amount of 380 litter of gaseous ³He at room temperature was condensed by a heat contact with decompressed liquid helium-4 at 1.3 K. For the safety operation and maintenance, a gas handling system was produced to store, transfer and recover the ³He gas. The achieved temperature of the ³He target is around 1.3 K with a liquid ⁴He consumption of 50 litter / day.

In this contribution, we present a detail of the liquid ³He target system together with the operational result in the beam time in May 2013.

References

[1] M. Iio et al., Nucl. Instrum. Meth. A687(2012)1.

[2] R.S. Hayano et al., Proposal to J-PARC 50 GeV Proton Synchrotron (J-PARC E17).

[3] M. Iwasaki et al., Proposal to J-PARC 50 GeV Proton Synchrotron (J-PARC E15).