Fabrication of backed ⁹⁴Zr target for RDM lifetime measurement

C. K. Gupta¹, Aman Rohilla¹, S.R. Abhilash², D. Kabiraj², R.P. Singh², D. Mehta³ and S.K. Chamoli¹

¹Department of Physics and Astrophysics, University of Delhi , Delhi - 110007, INDIA ²Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi - 110067, INDIA ³Department of Physics, Panjab University, Chandigarh - 160014 , INDIA

Abstract

An enriched ⁹⁴Zr target of thickness 520 μ g/cm² has been prepared by using electron beam deposition method at Inter University Accelerator Center (IUAC), New Delhi. Tantalum of thickness 3.5 mg/cm² was used as a backing. A very thin layer (~ 35 μ g/cm²) of gold was made over ⁹⁴Zr layer to protect it from peeling off and also to protect the outer layer of zirconium from environment. 143 mg of pelletized enriched material was utilized for the fabrication of ⁹⁴Zr targets. The target has been successfully used in a test run of Recoil Distance Doppler shift Method (RDM) lifetime measurement experiment at IUAC. The X-ray fluorescence (XRF) method [7] of thickness measurements was used to measure the thicknesses of target layers as well as impurities present in the target.

References

- [1] T. K. Alexander, et al., Advances in Nucl. Phys., edited by M. Baranger and E. Vogt (Plenum, New York, 1978), Vol. 10, p.197.
- [2] A. Dewald, et al., Progress in Particle and Nucl. Phys., Vol. 67, Issue 3, 786-839 (2012).
- [3] H. J. Maier, et al., Nucl. Instr. and Meth. A 303 (1991) 172.
- [4] A. Meens, et al., Nucl. Instr. and Meth. A 334 (1993) 200.
- [5] John P. Greene, et al., World conference of the International Nucl. Target (USA), Development Society: special high purity materials and targets, 140 Santa Fe, NM 1990.
- [6] Sunil Kalkal, et al., Nucl. Instr. and Meth. in Physics Research A 613 (2010) 190194.
- [7] Sanjiv Puri, et al., Nucl. Instr. and Meth. B 111 (1996) 209-214.