

Properties of nuclear masses for heavy and superheavy nuclei

Hiroyuki KOURA Advanced Science Research Center, Japan Atomic Energy Agency (JAEA)

I. Introduction
II.Bulk properties of nuclear masses
III. Nuclear mass formulae
IV. Application:

i) r-process nucleosynthesis (heavy nuclei)
ii) Superheavy nuclei

V. Summary

Strength

Why nuclear mass?

- Equivalence to **total energy** of nucleus: $E = mc^2$
 - Governing nuclear reaction and decay modes

 $\lambda = \frac{1}{2\pi^3} \int_{-Q}^{0} \sum_{\Omega} |g_{\Omega}|^2 \cdot |M_{\Omega}(E_{\rm g})|^2 f(-E_{\rm g}+1) dE_{\rm g}$

Diff. of mass(total energy) determine the direction of nuclear decay.

Decay rate of beta-decay

Mass-measured nuclei: current understandings

Mass-measured nuclei: current understandings

Importance of mass prediction : drip line

O.V. Tarsov, et al., PRL 102, 2009 (MSU)

50

measured proc

cross section

deviating from

NSCL (2007)

KTUY

- Schematic -

- Experiment -

Notable feature on discontinuity of derivative of mass values

- Z=50, N=82 and Z=82 discontinuity of derivative: Spherical single-particle shell closure
- N=88-90 discontinuity: Shape transition

 Assumption: Cores among related six nuclei are the same.

Region	num.	Average	RMS dev.
All	1715	5 -1.7 (keV) 331.8(I	
A>100	1202	-0.03	161.2
<i>A</i> ≤100	513	-29.3	554.1

 Assumption: Cores among related six nuclei are the same.

Region	num.	Average	RMS dev.	
All	1715	5 -1.7 (keV) 331.8(k		
A>100	1202	-0.03	161.2	
<i>A</i> ≤100	513	-29.3	554.1	

 Assumption: Cores among related six nuclei are the same.

Region	num.	Average	RMS dev.
All	1715	-1.7 (keV)	331.8(keV)
A>100	1202	-0.03	161.2
<i>A</i> ≤100	513	-29.3	554.1

•Assumption: Cores among related six nuclei are the same.

Region	num.	Average	RMS dev.	
All	1715	-1.7 (keV)	331.8(keV)	
A>100	1202	-0.03	161.2	
<i>A</i> ≤100	513	-29.3	554.1	

Mass relation: Garvey-Kelson systematics

A consideration of cancellation of core + valence nucleons (based on the shell model)

 Assumption: Cores among related six nuclei are the same.

Region	num.	Average	RMS dev.
All	1715	-1.7 (keV)	331.8(keV)
A>100	1202	-0.03	161.2
<i>A</i> ≤100	513	-29.3	554.1

larger

AE/

Mass relation: Garvey-Kelson systematics

cf. Study for paring and proton-neutron interaction: neighboring doubly-magic nuclei.

Systematical trend of average p-n interaction crossing N=126.

A consideration of cancellation of core + valence nucleons (based on the shell model)

 Assumption: Cores among related six nuclei are the same.

Region	num.	Average	RMS dev.
All	1715	-1.7 (keV)	331.8(keV)
A>100	1202	-0.03	161.2
<i>A</i> ≤100	513	-29.3	554.1

larger

PRL 102, 122503(2009)

AE/

• Bulk properties of mass surface:

- Volume energy, surface energy, symmetry energy, ...

Shell gaps:

- N, Z=20, 28, 50, 82,126(only N) and a change of magicities (ex. N=14 to 16)

• Transition of sphere to deformation:

– Discontinuity of derivatives at N=88 to 90 near the β -stable region.

Wigner term:

- Discontinuity at N=Z.

Averaged even-odd effect:

- Staggering change of masses alternates even and odd-N/Z.

There are many and various mass models.

• Systematics:

- Construction by focusing mass relation
- Mass Model, Apploximation:
- Macro-micro, Hybrid, or micro-like framework

Only mass data available to obtain are adopted. (RMF, EDF mass formula are not included.)

Skyrme-Hartree-Fock-Bogoliubov mass formula (2002 - 2010)

by S. Goriely et al.

$E_{\text{tot}} = E_{\text{HFB}} + E_{\text{wigner}}$

BSk21 force parameter set:

 t_0 =-3961.39 MeV fm³, t_1 =396.131 MeV fm⁵ $t_2=0 \text{ MeV fm}^5$, $t_3=22588.2 \text{ MeV fm}^{3+3}\alpha$ t_4 =-100.000 MeV fm⁵⁺³ β , t_5 =-150.000 MeV fm⁵⁺³ γ x₀=0.885231, x₁=-0.0648452, t₂x₂=1390.38 MeV fm⁵ $x_3=1.03928, x_4=2.00000, x_5=-11.0000$ W₀=109.622 MeV fm⁵, α =1/12, β =1/2, γ =1/12 $f_{n}=1.00, f_{p}=1.07, f_{n}=1.05, f_{p}=1.13$ V_W =-1.80 MeV, λ =280, V'_W =0.96, A_0 =24

The long road	d in the HFB mass model development	<u>Accuracy</u> σ _{rms} (2149 nuc)
HFB-2 :	Possible to fit all 2149 exp masses Z≥8	659 keV 🛉
HFB-3:	Volume versus surface pairing	635 keV
HFB-4-5:	Nuclear matter EoS: M [*] _s =0.92	660 keV
HFB-6-7:	Nuclear matter EoS: M [*] _s =0.80	657 keV
HFB-8:	Particle-number projection	635 keV
HFB-9:	Neutron matter EoS	733 keV
HFB-10-13:	Low pairing & NLD	717 keV
HFB-14:	Collective correction and Fission B_f	729 keV
HFB-15:	Coulomb correlations / CSB	678 keV
HFB-16:	Pairing constrained to NM	632 keV

Current version: HFB-21 (2010)

G-K sys. check for HFB formulae

15

HFB2(2002)

Finite-Range-Droplet Model (FRDM) mass formula (1995) by P. Möller et al.

Current version is FRLDM (2003-)

E(Z, N, shape)=E_{macro}(Z, N, shape)+E_{micro}(Z, N, shape)

E_{macro}: Droplet part as a function of Z and N E_{micro}: Folded Yukawa-type potential + Nilsson-Strutinsky method

- Deformation, fission barrier is obtained
- Good prediction on fission properties.

by H. Koura et al., PTP113 (2005)

*M*_{gross} smooth function of N and Z. (same as the TUYY formula) *M*_{shell}: modified Woods-Saxon pot.+BCS+deform. config.

- Deformation, fission barrier is obtained
- Change of magicties in the n-rich nuclei is predicted. (N=20 -> 16, etc.)
- Topic: decay modes for superheavy nuclei are applied for.

Topic: decay modes for superheavy nuclei are applied for.

- Deformation, fission barrier is obtained
- Change of magicties in the n-rich nuclei is predicted. (N=20 -> 16, etc.)

M_{shell}: modified Woods-Saxon pot.+BCS+deform. config.

*M*_{gross} smooth function of N and Z. (same as the TUYY formula)

by H. Koura et al., PTP113 (2005)

by H. Koura et al., PTP113 (2005)

*M*_{gross} smooth function of N and Z. (same as the TUYY formula) *M*_{shell}: modified Woods-Saxon pot.+BCS+deform. config.

- Deformation, fission barrier is obtained
- Change of magicties in the n-rich nuclei is predicted. (N=20 -> 16, etc.)
- Topic: decay modes for superheavy nuclei are applied for.

AME11(exp)

Extrapolation to the n-rich nuclei

diverge in the very neutron-rich region

Extrapolation to the n-rich nuclei

R-process nucleosynthesis

-Check the mass formulae as astrophysical data-

R-process nucleosynthesis

S_{2n} systematics

S_{2n} systematics

S_{2n} systematics

Another possibility: Influence of shell-quenching far from stability

B. Chen et al. / Physics Letters B 355 (1995

Fig. 2. r-process abundance fits obtained with ten equidistant neutron-density components from 10^{20} cm⁻³ to 3×10^{24} cm⁻³ according to Fig. 1. In the upper part, the result is presented for FRDM [10] masses with the $T_{1/2}$ and P_n values from the QRPA calculations according to Ref. [11]. In the lower part, masses of spherical nuclei around N = 82 have been replaced by masses from HFB calculations with the Skyrme force SkP. The quenching of the N = 82 shell gap (see Fig. 4) leads to a filling of the abundance troughs around $A \simeq 120$ and 140, and to a better overall reproduction of the heavy-mass region.

Kink of S_{2n} , or

N=81 N=83 FRDM ETFSI Sk₽ SkP 4 З 2 0 -1 5 1 Neutron separation energy, S_n [MeV] Fig. 4. Comparison of S_n values for the isotones N = 81 and 83 as predicted by different mass models. The difference $\delta S_n = [S_n(N + S_n)]$ $= 81) - S_n(N = 83)$ is a measure of the N = 82 shell strength and

N=83

is shaded for SIII (light) and SkP (dark). The shell quenching with distance from stability for SkP, in contrast to SIII, can be recognized. Masses of odd-odd nuclei have not been calculated in

S the S values of the N = 81 and 83 isotones below 50 Sn₈₂. The energy change $\delta S_n = [n(N = 81) - S_n(N = 81)]$ = 83], i.e. the sudden drop in S_n when crossing the = may stell, sancesure for the 1/2= 82 stel srength. Within the four approaches used here, this drop is from $\beta_n(N) \neq |\delta| = |\delta$ 83) \simeq 1–3 MeV in ¹³³Sn. From the plot it is evident that the two empirical models, ERDM and ETFSI, as well as the HF+BCS model with the SUI interaction show a very strong N = 82 shell effect, nearly independent of proton number. In these models, ${}^{122}_{40}$ Zr₈₂ is a snewtron masic as 1325 on which the HEB model with the skip force route in a quenching by the N =82 shell. This quenching effect is due to the pairing coupling perwon the bound time for inuum states. Since the SIII interaction overestimates the sizes of shell gaps, for this force a similar pairing coupling

of the HFcalculation the best im mass region calculation proach is 1 only replac els by the n closure, wh with SIII p

As alrea with SIII s ETFSI, i.e. tance from the gap in hand HFB strength, le

Mass-measured nuclei in the superheavy mass region

Poor mass-measurement in the superheavy mass region

Why is direct mass measurement?

Why is direct mass measurement?

To obtain ground-state energies (essentially important!)

Alpha decay chains in SHE

chains.

Beam energy from (predicted) excitation energy

Energy at maximum cross section (derived from injected beam energy with Q of mass formulas)

Estimation of absolute values of beam energy depends on (unknown) masses of compound nuclei

(Long-lived superheavy nuclei are located near the β -stability line)

Total half-lives (α , β , p, sf)

shell gaps are seen

shell gaps are seen

13年5月24日金曜日

α -decay Q-value of superheavy nuclei

α -decay Q-value of superheavy nuclei

13年5月24日金曜日

- We give a short review of systematical properties of experimental nuclear masses.
 - Mass-systematics like G-K is a good tool to check mass values.
- We survey various mass formulae:
 - Old-parametrized mass formulae (in 1976, 88) generally fail to extrapolation.
 - HFB type mass formulae sometimes give anomaly on GK-sys or alpha-chain sys.
- At the n-rich, A=130 and 195 related to the r-process, there is poor exp. mass data.
- In the neutron-rich heavy mass region and superheavy mass region, mass measurements is required for ground-state information.