

- ePHENIX is designed to be a comprehensive EIC detector at a moderate cost (connect to Kieran's talk).
- Magnetic field design and tracking define the topology of the experiment
- A upgrade path that supports pp, pA before EIC era (Joe's talk)

Brainstorming for fs/ePHENIX manget

- PHENIX has been planning upgrade programs aimed at both central and forward region
 - Central MIE sent to DOE by BNL Apr 2013
- Productive series of workfests hosted to brainstorm/develop forward detector designs
 - Last workshop: May 2013 @ Santa Fe and July 2013 @ Japan/RIKEN
- Current progress
 - Converged on detector concept designs
 - We got the BaBar magnet! (See John. H.'s talk)
 - Performance quantified in first order
 - Developing GEANT simulation models
- ePHENIX LOI writing committee formed, planned collaboration release at end of August

Forward detector design Goals and constraints

- Compatible with central arm upgrade
- ▶ Fit in the default IR for s/ePHENIX
 - IR limit in Z = 4.5m
 - Height limit of beam-rail of 4.5 m
 - No bending magnetic field on beam
- An upgrade path that supports pp/pA/AA

Recent development: Babar Magnet

- Cancelation of SuperB has made BaBar solenoid potentially available
- It is awesome news that PHENIX is getting it (See John. H.'s talk)
- Favor for ePHENIX tracking
 - Designed for homogenious field in central tracking
 - Longer field volume for forward tracking
 - Higher current density at end of the magnet -> better forward bending
 - Work with RICH

ePHENIX tracking/field overview

- Hadron-going direction: GEM tracker in fringe field
- Central rapidity: TPC tracker @ 1.5T longitudinal field
- Electron-going direction: GEM tracker @ 1.5T longitudinal field

Allow hadron collisions

Hadron going direction

Tracking overview for forward directions

- ▶ Field transverse to the track \rightarrow bending of the track \rightarrow sagitta \rightarrow measurement of (1/p)
- Besides brutal force increase of tracking resolution/field strength, geometry and field direction play an important role
- For a cylindrical symmetric field:

Transverse field is directly related to shape of central longitudinal field:

$$B_T = B_z \tan \theta + \frac{\tan \theta}{2} z \frac{\partial B_z}{\partial z} + O(\theta^2)$$

BaBar's graded current density help both

Tracking optimization with numerical

field simulation

Using ϕ segmented GEM with resolution of R $\Delta \phi$ = 50 μ m

Magnetic bending
Track of η=2.0, p=30 GeV

Summary for sagitta
Track of p=30 GeV

Very forward tracking: If we need improved forward field

Design Family	Example
Piston	Passive piston (C. L. da Silva)Super conducting piston (Y. Goto)
Dipole	 Forward dipole (Y. Goto, A. Deshpande, et. al.) Redirect magnetic flux of solenoid (T. Hemmick) Use less-magnetic material for a azimuthal portion of central H-Cal (E. Kistenev)
Toroid	Air core toroid (E. Kistenev)Six fold toroid (J. Huang)
Other axial symmetric Field shaper	 Large field solenoidal extension (C. L. da Silva) Pancake field pusher (T. Hemmick)

Beam line magnetic field shielding, based on superconducting pipe. Test device planned (Stony Brook Group)

Very forward tracking: Passive piston field shaper

by C. L. da Silva

Very forward tracking:

Passive piston field shaper Performance

Advantage :

- Significantly improved very forward field where Babar field is least effective
- Simple implementation
- Minimal interaction with Babar field and beam
- Challenges that under study
 - Blocking Hcal acceptance of 4<η<5 for diffractive studies
 - Background shower from piston
 - Further improvement limited by total piston flux (may use silicon detector)
- Good ideas for improving momentum resolution is there.
 Not have to use for stage-I EIC, Not in LOI base design.

RICH with ePHENIX tracking and field: Generic feature of current design

- Good optical focusing spherical mirror
- ▶ Generic geometry Mirror R = 2m
 - spherical mirrors focus light to a inner sphere of half radius at leading order (from Tom)
 - Therefore, for 1m RICH volume -> ~1m focusing distance -> ~ 2m RICH mirror radius
- ▶ Mirror segment six (or eight) azimuthal segments
 - Following study shows that it is best to make mirror center away from beam line -> need azimuthal segmented mirror and photon detectors
 - Minimize number of azimuthal segments -> minimal rings crossing the edges
- ▶ Focal plane Six flat readout planes (~triangle shape, 70x70 cm)
 - Analytically calculated for RICH light at the vicinity of the primary tracks
 - Almost flat surface for optimized design
- RICH Entrance window match well with GEM and
 - Analytically fix to 1m RICH gas volume for tracks originated from IP center

RICH with ePHENIX tracking and field: Proposed Design: R-Z projection

- "Beautiful" optics and assuming spherical mirrors
- 1 meter RICH gas volume along track
- Photon sensor is flat (easier for GEM construction)
- Small area for photon readout
- Avoid invading tracking space (Z > 1.5m, away from the optimal sagitta plane)
- Z < 3.0m from EMCal limit and allow a volume for aerogel at lower eta
- Defocusing due to extended vertex is small for most (Z-η).
 Defocusing <5% θMAX for worse case(Z-η) = (50 cm, 1.0)

Proposed Design: azimuthal projection

Estimating field distortion for RICH

- Field calculated numerically with field return
- Field lines mostly parallel to tracks in the RICH volume
- Field distortion of RICH ring only contribute to a minor uncertainty
 - Uncertainty on R suppressed by $1/\sqrt{2 \text{ dim}}$ 1/p, $1/\sqrt{N_y}$

A RICH Ring:

Photon distribution due to tracking bending only

Central barrel tracking

Designs considered

- Under assumption that VTX can not be used for ePHENIX
 - Assuming cumulated radiation dose is high due to sPHENIX operation
 - Need tracker with low radiation length
- Compact GEM based TPC
 - Thin in material and easy for readout
 - Limited hadron PID for p<1GeV
 - d(1/p) ~ 0.4%/GeV for a micro-TPC design as next few slides
 - Default design and used for costing
- Cylindrical GEM tracker
 - Good resolution per plane
 - Need to concern about field effect : drifting direction perpendicular to magnetic field. Back-to-back GEM per layer considered
 - d(1/p) ~ 0.4%/GeV for 4 layer GEM tracking

Once upon a time there was a TPC proposed for PHENIX

Craig Woody, Linear Collider Workshop, 2003

TPC

- Based on LEGS-TPC design
 - 80% argon, 10% CF4 and 10% CO2
 - Max 10µs drift time
 - GEM for amplification
- Tracking studies
 - 1.5 Tesla field
 - Radius = 15 80 cm (~1/3 STAR TPC), Length = ± 90 cm
 - RΔφ resolution = 300 μm
 - 40 R segments, 2 mm RΔφ readout pad segmentation

LEGS-TPC, Geronimo, 2005

LEGS: Laser Electron Gamma Source @ BNL

High Voltage Buffer Zone

Cylindrical GEMs

GEM considerations

- Fine segmented in the φ direction for momentum measurement
- Back-to-back two GEMs per layer to cancel magnetic drifting effect in leading order

Tracking study:

- Uniform 1.5 Tesla field
- 4 GEM layers at R = 15, 30, 50, 70 cm
- ϕ resolution , $\delta(\phi *R) = 100 \mu m$

Further tweaking the yoke

Significantly improved field uniformity and balance

Net force on coil reduced from ~300T to few T

Further study needed

- Reached quoted uniformity for Babar (±3% for central tracking volume)
- ▶ But is it enough for TPC? Further optimization needed

Electron going direction tracking

Considerations

- Tracking space for electron-going direction is very compact; Z>-100 cm
- However, a few percent momentum resolution is only needed for E/p matching at p<a few GeV (See Kieran's talk)
- Use a combination of phi segmented tracking detectors
 - $-1.0>\eta>-1.5$: TPC track segment
 - $-1.5>\eta>-2.0$: Vertex + GEM + TPC
 - -2.0>η>-3.0: Vertex + GEM
 - dp/p<5% for p<4GeV: good enough for E-P matching and electron ID

Vertex for electron direction tracking

- Vertex used in electron side track fitting for hard scattering events
 - For exclusive events, electron ID can use event topology
- Use timing system for vertex measurement
 - Electron beam bunch ~ mm width, its location VS time marked by RF time
 - High precision timing detector serve as BBC for hadron going side
 - Cover 4< η <5 @ in front of EMCal, ΔT <30 ps $\rightarrow \Delta z_{VERTEX}$ < 5mm \rightarrow dp/p $\lesssim 2\%$
 - Possible by MRPC / MCP-PMT technologies
 - For high multiplicity events, can be further refined by tracking

Conclusion

- BaBar magnet is very efficient for ePHENIX
 - 1.5 T nominal central field
 - Large field volumne and graded coil -> better tracking @ forward
 - Good field homogeneity in central region
- A set of yoke and tracking design proposed
 - Initial design indicates good enough for ePHENIX main purpose at 1st stage
 - More detailed work are needed and on the way
 - Improvement ideas always welcomed

Backup Slides

Extended Shape of the focal Plane

Considered Design: Ideal optics

Advantage

- Perfect optics (forms circle rings)
- No azimuthal edges
- Large RICH volume

Disadvantage

- Cut into sagitta tracking plane
- Large area to readout RICH photons/close to beam line
- Limiting space for additional tracking plane for pattern recognition

Considered Design: Single sphere mirror

Advantage

No azimuthal edges

Disadvantage

- Cut into sagitta tracking plane
- Focal plane is too close to beam
- Focal plane is not flat
- Steep angle of impact on the photon detector for low eta RICH photons

Considered Design: More off-beam

Disadvantage

 Steeper angle of impact on the photon detector for high eta RICH photons

Considered Design: More focus-to-beam

- Similar to the default design
- Disadvantage
 - Photon detector moves into larger eta region, where tracking is more vulnerable to multiple scattering

Considered Design: Less azimuthal segmented - Quadrant

Advantage

Less edges (four azimuthal edges)

Disadvantage

- Steeper angle of impact at focal plane
 -> more stretched elliptic ring
- This problem is double worse along the cone of eta=1

