PHENIX forward detector upgrades for nucleon structure studies

sPHENIX workfest at RIKEN July 31st, 2013 Yuji Goto (RIKEN/RBRC)

Outline

- Introduction
 - Nucleon (spin) structure
- Forward sPHENIX upgrades
- Design
- Physics
 - 3-dimensional nucleon structure
 - Cold nuclear matter
- Evolution to ePHENIX

Nucleon structure

- Constituent-quark model
 - Quarks with the effective mass (caused by the gluon)
 - Explains the magnetic moment of the nucleons
 - But, the quark spin cannot explain the nucleon spin ("spin puzzle")
- Quark-gluon model
 - Bare quarks and gluons
 - Initial state of high-energy hadron colliders
- Understanding the differences (or gap) of these models
 - Gluon
 - Chiral symmetry
 - Confinement

Spin puzzle

- Expected to be explained by the quark spin (from the constituent quark model)
- Experiments
 - CERN-EMC experiment (polarized DIS experiment)
 - Quark-spin contribution

 $\Delta \Sigma = \Delta u + \Delta d + \Delta s = 12 \pm 9(\text{stat}) \pm 14(\text{syst})\%$

- Combining with neutron and hyperon decay data
- Total quark spin constitutes a small fraction of the nucleon spin
- Integration in x = 0 ~ 1 makes uncertainty
- SLAC/CERN/DESY/JLAB experiments
 - More data to cover wider x region with more precision
- Based on the quark-gluon model

 $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta g + L$ Orbital angular momentum Gluon spin contribution

Quark spin contribution

RHIC spin

Gluon polarization

Sea quark polarization with W measurement

Next direction: Orbital angular momentum

3-dimensional nucleon structure

- Many-body correlation of partons
 - To describe the orbital motion inside the nucleon
- Parton distribution in transverse direction
 - Extended/generalized picture of the parton distribution
 - Transverse-momentum dependence (TMD)
 - Space distribution (tomography)

Stages of PHENIX detector upgrades

- Barrel sPHENIX upgrades
 - Compact jet detector at midrapidity with high-rate capability
 - Precision jet / dijet / photon-jet measurement to understand the nature of the strongly coupled QGP
 - Future options to add tracking and preshower for heavyflavor quarkonia and internal jet structure measurements

Stages of PHENIX detector upgrades

- Forward sPHENIX upgrades
 - Open geometry for wide kinematic coverage of photon / jet / leptons / identified-hadrons
 - Understanding 3-dimensional (TMD) quark-gluon structure of the nucleon and nuclei
 - Measurement of the nuclear gluon distribution and search for gluon saturation at small-x
- Evolution to ePHENIX at eRHIC
 - 3-dimensional space structure (tomography) of the nucleon and nuclei
 - Precision understanding of strongly-coupled QGP by knowing the initial state

Forward sPHENIX design

- Compatible design for eRHIC
 - Constraint from IR design
 - focusing and bending magnets for the electron-ion collision
 - 4.5 m from IP available in z direction
 - Hermeticity for exclusive measurements
- Magnet discussion
 - Piston
 - Dipole
 - Toroid
 - Solenoid extension
- Detector configuration
 - Charged-particle tracking (e.g. GEM)
 - Particle identification (e.g. RICH)
 - EM and hadron calorimeters
 - Vertex detector? (silicon or GEM?)
 - (Roman pot detector for exclusive measurements at eRHIC)
- More discussion by Joe Seele this afternoon

Forward sPHENIX design

- Forward field shaper
 - Passive piston
 - Total flux much enough?
 - High resolution tracking necessary (silicon detector)

Cold Nuclear Matter (CNM) physics

- Measurement of the nuclear gluon distribution $G_A(x)$
 - To know initial state of heavy-ion collisions
 - precision understanding of strongly-coupled QGP
- Search for gluon saturation, or suppression of G_A(x) at small-x and verify CGC (color glass condensation) framework
 - CGC: effective field theory to describe the saturated gluon
- Energy loss of partons in CNM and its relation to p_T broadening
- Hadronization mechanism and time scales

CNM physics at PHENIX

- Current measurements
 - J/ ψ and hadron-hadron correlations over a broad range of rapidity
 - Sensitive to extended range of x
 - Open heavy-flavor and a first look at Drell-Yan
 - With FVTX installed in 2012
 - Comparison data to J/ψ
- MPC + MPC-EX upgrade (2014 –)
 - More details by John Lajoie this afternoon
 - Electromagnetic calorimeter + preshower
 - 3.1 < η < 3.8 in the muon piston
 - Prompt-photon

CNM physics at forward sPHENIX

- Quarkonia
- Vertex-tagged open heavy-flavor
- Inclusive hadrons
- Fully-reconstructed jets
- jet-jet correlations
- Drell-Yan
 - Much more extended kinematic reach
 - Smaller statistical and systematic uncertainties
 - Different energies and nuclear species

Transverse-spin physics

• Single transverse-spin asymmetry

$$A_{N} = \frac{d\sigma_{Left} - d\sigma_{Right}}{d\sigma_{Left} + d\sigma_{Right}}$$

 Expected to be small in hard scattering at high energies

$$A_N \approx \frac{m_q \alpha_S}{p_T} \approx 0.00$$

Kane, Pumplin, Repko PRL 41 1689 (1978)

- FNAL-E704
 - Unexpected large asymmetry found in the forward-rapidity region
 - Development of many models based on perturbative QCD

X_E

Transverse spin asymmetries at RHIC

Forward rapidity π^0 at STAR at $\sqrt{s} = 200 \text{ GeV}$

Forward identified particles at BRAHMS

TMD and higher twist

- At small p_{τ}
 - Described by the TMD (Transverse Momentum Dependent) factorization framework
 - Sivers mechanism
 - Correlation between the transverse spin of the nucleon and intrinsic p_T of partons in the initial state
 - Collins mechanism
 - Correlation between the transverse spin of the parton and p_T of hadrons in the final state
- At large p_T
 - Described by the collinear factorization framework
 - Higher twist effect
 - Spin-dependent p_T components generated through quarkgluon and multi-gluon correlations
- At intermediate p_{τ}
 - Identity of the Sivers mechanism and the higher twist effect

TMD non-universality

- Opposite-sign contribution to the transverse-spin asymmetries in the semi-inclusive DIS process and the Drell-Yan process
- Fundamental QCD prediction based on gauge invariance
- Verification is an important milestone for the field of hadron physics
- Competitive program in fixed target experiments and in collider experiments

TMD evolution

- Recent theoretical progress in the derivation of the evolution equation for TMD parton distribution and fragmentation functions
- Comparison of the asymmetries at fixed-target energies and collider energies for test of the TMD evolution
- QCD analysis of TMD observables to be possible

Collins effect and transversity

- Azimuthal anisotropy in the distribution of hadrons in final-state jets
- Transversity measurement with single identified hadrons (Collins fragmentation function) or with identified hadron pairs (interference fragmentation function)
 - Determination of the tensor charge of the nucleon
 - Test of the Lattice QCD prediction

Transverse spin asymmetries at PHENIX

- MPC-EX (2014 –)
- Prompt photon asymmetry
 - To distinguish the Sivers effect and the hither-twist effect
- Collins asymmetry in jets
 - π^0 correlations with jet-like clusters

- Sivers effect in Drell-Yan process
 - $\sqrt{s} = 500 \text{ GeV}$
 - 1 < η < 4
 - 4 GeV < mass < 8 GeV
 - cover the valence-quark region around x_{Bi} = 0.2
 - comparison with SIDIS measurements
 - large asymmetry
 - $3 < \eta < 4$ is important to explore higher x_{Bi} region

21

- Jet asymmetry measurement
 - Sivers or higher-twist effect

- Asymmetry inside the jet
 - Collins function
 - Interference fragmentation function

- Collins asymmetry inside the jet
 - TppMC simulation
 - Collins/Sivers functions from Torino
 - Transversity from Soffer bound
 - *p*_T > 1 GeV/*c*
 - From Ralf Seidl

- Polarized-proton nuclei collision for saturation study
 - Link between CNM and spin physics
 - Transverse single-spin asymmetries in polarized p+A collisions are sensitive to the saturation scale in the nucleus

$$\frac{A_N^{pA \to hX}}{A_N^{pp \to hX}} \approx \frac{Q_{s,p}^2}{Q_{s,A}^2} f(p_T^h)$$

$$\frac{A_N^{pA \to hX}}{A_N^{pA \to hX}} \approx 1$$
Z.-B.Kan and F.Yuan
PRD84, 034019 (2011).

Evolution to ePHENIX

 Precision understanding of strongly-coupled QGP by knowing the initial state

Evolution to ePHENIX

• Inclusive DIS

• Gluon and sea-quark helicity distributions

 Scattered electron detection at backward rapidity and midrapidity

Evolution to ePHENIX

- Semi-inclusive DIS
 - Quark and gluon TMD measurements
 - Tag pions and kaons
 - Extract Δs
- Exclusive and diffractive channels
 - DVCS (Deeply Virtual Compton Scattering) and HEMP (Hard Exclusive Meson Production)
 - With a limited luminosity at stage-1 eRHIC
- More discussion to be performed in the ePHENIX Lol session (by Kieran/Jin/Itaru) Friday morning

Requirements for the detector design

- Sivers effect in Drell-Yan process
 - Open heavy-flavor background
 - Vertex detector
 - Light-hadron background
 - For e⁺e⁻ measurement
 - Calorimeter and tracking
 - Additional e/π separation
 - For $\mu^+\mu^-$ measurement?
- Jet asymmetry measurements
 - Calorimeter and tracking
 - Particle-ID
- ePHENIX
 - Scattered electron detection
 - Backward rapidity and midrapidity
 - Particle-ID
 - Midrapidity and forward rapidity
 - Roman-pot detector to tag scattered proton

Timeline

- Forward sPHENIX
 - RHIC physics (polarized p+p / p+A / d+A) not on the table

Summary

- The forward sPHENIX upgrades will give us great opportunities for studying the nucleon spin structure and cold nuclear matter
 - Sivers asymmetry in Drell-Yan process
 - Jet asymmetry measurements
 - Search for gluon saturation
- Detector design and studies are ongoing with physics requirements
 - Detector configuration
 - Magnet discussion
 - Evolution to ePHENIX
- It is important to perform physics not only at eRHIC but also at RHIC with polarized p+p / p+A / d+A