Nucleon Structure by Lattice QCD

Taku Izubuchi

RBC Nucleon group Tom Blum, Chulwoo Jung, Meifeng Lin, Shigemi Ohta, Eigo Shintani, ...

July 29 2013, sPHENIX workfest, RIKEN, Wako, Japan

Contents

- Introduction
- Nucleon Form Factors
- Nucleon Structure Functions
- Summary

Who are we?

- RIKEN-BNL Research Center
 - 2 fellows, 2 PostDocs + visiting scientists / students

RIKEN BNL Columbia (RBC) Collaboration (1998-)

- Columbia University 2 faculty, 1 PostDoc, 7+2 Students
- University of Connecticut 1 faculty, 1 Students
- BNL HEP Theory
 3+1 scientists, 1+2 PostDocs,
 1 student (SciDAC, LDRD, JSPS)
- BNL LG Theory 3 scientists, 3+1 PostDocs (SciDAC)

14 current students, ~23 PhD theses since 2005

- + UKQCD Collaboration (2005-)
 - Univ. of Edinburgh
 1 faculty, 2 PostDocs, 2+1 students
 - Univ. of Southampton 3 faculty, 2+1 Postdoc, 4 students
- + JLQCD (2012-, collaborating for physics measurement methods)
 - KEK, Tsukuba & Osaka Univ

(# of personnel: accumulation of last 3 years)
(#(current) + #(just left, but still collaborating))

$K \rightarrow \pi \pi$ Amplitude, I=2 channel

2012 Ken Wilson Lattice Award

Lattice: $32^3 \times 64 \times 32$, 2+1 DWF, Iwasaki DSDR, $a^{-1} = 1.375(9)$ GeV, $m_{\pi^+} = 142.9(1.1)$ MeV

	ReA ₂	ImA ₂
Lattice artifacts	15%	15%
Finite-volume corrections	6.2%	6.8%
Partial quenching	3.5%	1.7%
Renormalization	1.7%	4.7%
Unphysical kinematics	3.0%	0.22%
Derivative of the phase-shift	0.32%	0.32%
Wilson coefficients	7.1%	8.1%
Total	18%	19%

	${\sf Re}(A_2)(10^8/{ m GeV})$	$Im(A_2)(10^{13}/{ m GeV})$
Lat.	1.436(62)(258)	-6.83(51)(130)
Exp.	1.479(4) (K ⁺)	(n/a)

 ${\sf Re}(arepsilon'/arepsilon)_{
m EWP}=-6.52(49)(124) imes10^{-4}$

Errors: (stat)(syst)

Lattice Gauge Theory Receipt

- QCD vacuum ensemble generation \sim Accelerator
 - choice of gauge / sea quark actions
 - Algorithms / Machines
 - for each parameters $(a^{-1}, V, m^{\text{sea}})$

- Physical observable measurements \sim **Detector**
 - valence quark propagators (low eigenvectors), m_f
 - Hadron *n*-point green's functions, matrix elements

$$\left\langle \mathcal{O}\right\rangle = \int \mathcal{D}U_{\mu}\mathcal{D}\bar{q}_{i}\mathcal{D}q_{i}\mathcal{O}e^{-S_{\mathsf{LGT}}}/\left\langle 1\right\rangle$$

- Renormalize and Chiral/Volume/continuum extrapolations
- Algorithms / Machines (GPU,

Lattice Gauge Theory

• Analysis of Quantum Field Theory such as Quantum Chromo Dynamics, needs nonperturbative calculation.

> $\Psi(x), A_{\mu}(x), x \in \mathbb{R}^4$: continuous infinity quantum divergences: needs regularization and renormalization

- Discretized Euclidean space-time
- lattice spacing $a \sim 0.1$ fm (UV cut-off $|p| \leq \pi/a$)
- $\psi(n)$: Fermion field (Grassmann number)
- $U_{\mu}(n)$: Gauge field

• Feynman's path integral for Huge dimensional variables $32^3 \times 64 \sim 150$ M Number of states (for simplest 4⁴ Ising) $2^{4^4} \sim 10^{77}$ needs more than 10^{35} years ! RIKEN RICC ('09) ~ 110 Tflops peak BG/Q('12) @Edinburgh, KEK~ 2 x 1.2 Pflops peak

RBRC Computing

NYBlue('07)~ 130 Tflops peak

ANL Mira ('12) ~10 Pflops peak

RBRC In-house Computing resources

2k node RBRC BGQ, 400 TFlops, 2012-1k node BNL BGQ, 200 TFlops, 2012-

3k nodes RBRC/BNL BGQ, 600 TFlops, 2012 0.5 k nodes USQCD BGQ, 100 TFlops, 2013-

- Rapid R&D of idea
- Try & error algorithms
- Optimize code on fully controlled in-house machine
- attract top-notch scientists
- define computing group

Extends / propagates to leadership computers Kei, ANL, ONL

many breakthroughs in science & computing

48 k node ALCF Mira, 10 PFlops 88 k node, AICS Kei, 11 PFlops

Domain Wall Quarks (for up, down, and strange)

[Kaplan, Shamir, Blum & Soni]

- 4D lattice quark utilizing an "extra dimension", L_s. (expensive)
- Almost perfect chiral symmetry

Small unphysical mixing for the Weak Matrix Elements Error from discretization is small $\mathcal{O}(a^2 \Lambda_{QCD}^2) \sim a$ few %. Chiral extrapolation is simpler, continuum like.

• Unitary theory (at long distance).

Flavor-Chiral Symmetry in QCD

 $\mathcal{L}_{QCD} = \mathcal{L}_{gauge} + i\bar{q} \not D q$ q = (u, d) or = (u, d, s)

pseudoscalar (PS) mesons are light as it would be Nambu-Goldstone bosons in the quark massless limit, where the spontaneous chiral symmetry breaking occurs,

$$SU(N_F)_V \times SU(N_F)_A \times U(1)_V \times U(1)_A \to SU(N_F)_V \times U(1)_V$$

$$\partial_{\mu} \langle A_{\mu}(x) J_{5}(y) \rangle = 2m \langle J_{5}(x) J_{5}(y) \rangle,$$

$$\partial_{0} \langle A_{0}(x) | \pi \rangle e^{-M_{\pi}(x_{0} - y_{0})} (2E_{\pi}) \langle \pi | J_{5}(y) \rangle = 2m \langle J_{5}(x) J_{5}(y) \rangle,$$

$$\longrightarrow M_{\pi}^{2} \propto m \text{ (PCAC relation)}$$

Nucleon Structure

Form Factors

- Inelastic scattering
- EM form factors Shape, Size, Current distribution of Nucleon
- EW & BSM form factors Beta decay Electric Dipole Moment (EDM)

Structure Functions

- Moments of Parton Distribution Functions quark's momentum fraction <x>q quark's helicity fraction <x>Δq
- Direct calculation of PDF q(x), g(x) [Xiangdong JI 2013]
- GPD, TMD

Lattice details

QCD ensemble ("Accelerator")

- Nf=2+1 (up, down, strange dynamical quark) Domain Wall Fermion, generated by RBC/UKQCD Collaboration
- Iwasaki RG-improved gauge action and ~ 1/a mass quark to diminish the residual chiral symmetry breaking (lattice artifact)
- beta = 1.75
- Use masses of Pion, Kaon, Omega to set scale and quark masses $\rightarrow 1/a = 1.37$ GeV,
- two up/down quark masses (isospin symmetric)

am _l	am_s	$L^3 \times T$	L_s	m_{π} [MeV]	$m_{\pi}L$	<i>a</i> [fm]	am _{res}
0.001	0.042	$32^3 \times 64$	32	170	4.0	0.146	0.0018
0.0042	0.042	$32^3 \times 64$	32	250	5.8	0.146	0.0018

EM Form Factors of Nucleon

- e-N Elastic Scattering • Dirac Form Factor F1(Q²) • Pauli Form Factor F2(Q²) $\sqrt[P']{J_{EM}^{\mu}|\mathcal{N}(P)} = \bar{u}(P') \left[\gamma^{\mu}F_{1}(Q^{2}) + i\sigma^{\mu\nu}\frac{q_{\nu}}{2M_{N}}F_{2}(Q^{2}) \right] u(P)$
 - F1(Q²=0) is EM charge of Nucleon
 - F2(Q²=0)= κ is Anomalous Magnetic Moment
 - Mean square radii from slope of F_i(Q²) at Q²=0
 - Dirac radius : r1
 - Pauli radius : r2

$$\left\langle r_i^2 \right\rangle = -\frac{6}{F_i(0)} \frac{\partial F_i(Q^2)}{\partial Q^2} |_{Q^2=0}$$

Challenge in Nucleon calculation

- Some quantities are very sensitive to chiral symmetry \rightarrow Use of expensive chiral lattice quark DWF. This has great advantages manifest in, e.g. CKM physics, $K \rightarrow \pi\pi$, ε ' / ε
- Nucleon is more difficult : <u>statistical Noise</u>
- To avoid the excited state contamination, one needs to separate Nucleons and the EM current.

But signal to noise degrades exponentially

[Lepage]

$$S/N \sim C \exp[-t/\tau],$$

 $\tau = [m_N - 3/2m_\pi]^{-1} \approx 0.25 \text{fm}$

Example in F1 plateau

3pt function of Nucleon with momentum

distance b/w two N is 1.3 fm (also 1.1fm),
 S/N is proportional to exp(t/tau) ~ 1/ 300

Examples of Covariant Approximations (contd.)

All Mode Averaging AMA Sloppy CG or Polynomial approximations $\mathcal{O}^{(\mathrm{appx})} = \mathcal{O}[S_l],$ $S_l = \sum v_{\lambda} f(\lambda) v_{\lambda}^{\dagger},$ $f(\lambda) = \begin{cases} \frac{1}{\lambda}, & |\lambda| < \lambda_{\text{cut}} \\ P_n(\lambda) & |\lambda| > \lambda_{\text{cut}} \end{cases}$ $P_n(\lambda) \approx \frac{1}{\lambda}$

If quark mass is heavy, e.g. ~ strange, low mode isolation may be unneccesary

- low mode part : # of eig-mode
- mid-high mode : degree of poly.

AMA at work

- Target: V=32³ x 64 = (4.6fm)³x9.6fm, Ls=32 Shamir-DWF, a⁻¹=1.37 GeV, Mpi = 170 MeV
- Use Ls=16 Mobius as the approximation [Brower, Neff, Orginos, arXiv:1206.5214]
- quark propagator cost on SandyBridge 1024 cores (XSEDE gordon@SDSC)
 - non-deflated CG, r(stop)=1e-8 : ~9,800 iteration, 5.7 hours / prop
 - Implicitly restarting Lanczos of Chebyshev polynomials of even-odd prec operator for 1000 eigenvectors [Neff et al. PRD64, 114509 (2001)]: 12 hours
 - deflated CG with 1000 eigenvectors : ~700 iteration, 20 min /prop
 - deflation+sloppy CG, r(stop)=5e-3 : ~125 iteration, 3.2 min /prop
- Multiplicative Cost reduction for General hadrons could combine with {EigCG | AMG} and Distillation: x1.2 (Mobius) x 14 (deflation) x 7 (sloppy CG) ~ x 110

• $F_1(Q^2)$: tsep = 9 a ~ 1.3 fm

1 forward + 2 (up and down) seq-props, contraction cost is ~15% of sloppy propagator

Error bar x 2 - 2.7 ~ sqrt(4400/600)

 Total cost reduction upto (430 / 160) * (4400/600)
 ~ <u>x19.7</u>

Note this is still sub-optimal, 4 exact source and without deflation. (would be x30 for 2 exact sources)

- non-deflated CG, 150 config x 4 sources = 600 measurements : 5.7 * 3 * 4 * 150 config = 10K hours, 430 days
- <u>AMA</u>: 39 config, 4 exact solves / config (perhaps overkill), N_G=112 sloppy solves => 39 x 112 = 4400 AMA measurements : (5.7 * 3 * 4 + 12 + 0.06 * 3 * 112) * 39 config = 3.9 K hours, 160 days 4-exact (68%) + Lanczos (12%) + sloppy CG (20%)

Isovector F₁(Q²) [Meifeng Lin] Preliminary

- Mild quark mass dependence
- Dipole fit, Dirac radius from slope at Q2 = 0

Isovector F₂(Q²) [Meifeng Lin] Preliminary

- Mild quark mass dependence
- Much smaller statistical error with AMA

ii, κ results by others

Compilation Alexandrou et al. arXiv:1303.6818

- Isovector (no disconnected quark diagrams)
- Dirac radius, r1, undershoots
- r2 also except the lightest results with 30% error
- still large extraction in quark mass
- Finite Volume Effects / Discretization Error

Dirac and Pauli radii [Meifeng Lin] Preliminary

- Statistical error is much reduced by AMA
- r2 at Mpi=170MeV is closest result (~8 % stat err)!
 r1 still undershoots (~ 4% stat err)
- Anomalous magnetic moment K = F2(0) = 3.2 (3) at M(pi)=170 MeV experiment : K (exp) = 3.71

$$\left| \langle p | A_{\mu}^{+} | n \rangle = \overline{u}_{p} \left[\gamma_{\mu} \gamma_{5} G_{A}(q^{2}) + q_{\mu} \gamma_{5} \frac{G_{P}(q^{2})}{2M_{N}} \right] u_{n} \right|$$

~ 10%, 3 σ
 deficit

- excited state (v)
- statistics (v)
- Discretization (v)

• Finite Volume ?

Excited State Contamination in gA

- LHP, J.Green et al. (2012)
- Excited state increased gA

Structure functions

- pQCD extracts PDF from DIS q(x), g(x) [Koike's talk...]
- Euclidean Lattice QCD could calculate moments

$$\langle x \rangle_{\boldsymbol{q}} = \int_0^1 dx x [q(x) + \bar{q}(x)], \quad \langle x \rangle_{\Delta \boldsymbol{q}} = \int_0^1 dx x [q(x) - \bar{q}(x)],$$

via QCD matrix elements of local operator

$$\mathcal{O}_{[\gamma_5]}^{\{\mu_1\dots\mu_n\}} = \overline{\psi}(0)\gamma^{\{\mu_1}[\gamma_5]i\overleftrightarrow{D}^{\mu_2}\cdots i\overleftrightarrow{D}^{\mu_n\}}\psi(0)$$

[Direct PDF calculation is proposed by X.Ji 2013]

Renormalization : Calibration of "Detector"

New Renormalization Schemes

[09 C. Sturm, Y. Aoki, N. Christ, TI, C. Sachrajda, A. Soni] [10 L. Almeida, C. Sturm]

 Match the normalization of operator on lattice and in continuum theory (MS) via RI/SMOM schemes

calculate the 3 pt amplitudes for a momentum configuration (SMOM) on lattice non-perturbatively, and in continuum theories.

 $(q^2 = p_1^2 = p_2^2)$

• We find symmetric momentum (SMOM) configuration is useful to reduce one of the dominant systematic errors due to IR effects.

Quark mass renormalization error

 $\sim 10\%$ (MOM) $\rightarrow \sim 5\%$ (SMOM) $\rightarrow \sim 2\%$ (SMOM 2loop),

 Using different RI/SMOM schemes (using various spinor projections) to check the systematic errors

Isovector Mometum/Helicity fraction

(renormalized to Msbar μ = 2GeV)

Compilation Alexandrou et al. arXiv:1303.6818

<x> q / <x>dq from DSDR Preliminary

At very light mass, Mpi=170MeV ~ 6 % statistical error from AMA no excited state contamination by comparing 1.3 fm & 1.1 fm separation ~ 1σ higher than experiment

Nucleon Spin [X. Ji's talk]

Neucleon Spin

$$\frac{1}{2} = J^q + J^g, \quad J^q = \frac{1}{2}\Delta\Sigma^q + L^q$$

On Lattice, quark's total ang. mom and spin is computable by GPD [X. Ji 97]

$$J^{q} = \frac{1}{2} [A_{20}^{q}(0) + B_{20}^{q}(0)], \quad \Delta \Sigma^{q} = \tilde{A}_{10}(0)$$

Quark Angular Momentum

Lighter quark and larger Volume

 $B_{20}^{u+d}(0)$ $B_{2n}(t)$ to ${}^{3}\mathcal{B}_{aN} \equiv (\mathcal{A})$ shaded e

- spin and orbital angular mom has opposite signs
- up and down quarks has opposite signs
- Cancellation between down quark spin and orbital momentum : $J_d \sim 0$
- Disconnected diagram is ignored
- Lighter quark and larger Volume

Summary & Prospects

- Nucleon structure by Lattice QCD
- Challenges (compared to Meson)
 - Noise , exponentially growing
 - Volume \rightarrow (10 fm)³ lattice at Kei is very interesting
 - discretization error : $1/a \sim 2-3$ GeV, (c.f X. Ji's direct g(x), q(x))

PLAN (RBC/UKQCD)

- On physical DWF quark mass M(pi) ~ 135 MeV
- Two lattice spacings, a ~ 0.11 fm, 0.085 fm
- Volume ~ (5.5 fm)3, M(pi) L ~ 3.8
- QCDCQ (BlueGene/Q) : x 20 speed
- Statistical error reduction by AMA : x5 ~ x20 smaller cost

Meson results is already very
interesting on these QCD ensembles(MS 3 GeV) decay constantsvp $f_{\pi} = 130.2 \pm 2.9_{\text{stat}}$ MeV(Preliminary)
(Preliminary)p $f_{\kappa} = 156.1 \pm 3.2_{\text{stat}}$ MeV(Preliminary)
(Preliminary)Preliminary
R. Mawhinney
J. Frison
P(MS, 3 GeV)
 $f_{\pi}/f_{\kappa} = 1.198 \pm 0.006_{\text{stat}}$ (Preliminary)
(Preliminary)P

Kaon Bag parameter, Kl3 form factor (CKM)

 $B_{K}(\overline{\text{MS}}, 3 \text{ GeV}) = 0.533 \pm 0.003_{\text{stat}} \pm 0.000_{\text{chiral}} \pm 0.002_{\text{finite V}} \pm 0.011_{\text{pert}} \text{(Preliminary)}$ $\hat{B}_{K} = 0.754 \pm 0.004_{\text{stat}} \pm 0.0015_{\text{sys}} \text{(Preliminary)}$

$$\begin{split} f_{+}^{K\pi}(0) &= 0.9670 (20) \binom{+\ 0}{-42}_{m_q} (7)_{\text{FSE}} (17)_a \\ |V_{us}| &= 0.2237\ (7)\ \binom{+10}{-\ 0}_{m_q} (2)_{\text{FSE}} (4)_a \\ &\to \approx 0 \\ &\text{with phys.} \quad \text{precision } \lesssim 0.3\% \text{ feasible!} \\ &\text{point data} \end{split}$$

Preliminary A. Juettner Lattice13

Physics Highlights

 \bigotimes

[QCD corrections]

a trans

I experiment

[Standard Model & Beyond]

- $K \rightarrow \pi \pi$ I=2 & I=0, $\Delta M(K_L-K_S)$
- A new class of error reduction technique (AMA)
- QCDOC \rightarrow QCDCQ : on-physics point (M π =135 MeV) large volume ~(5 fm)³, QCD ensembles with DWF

<->

- QCD + Electromagnetism : Hadron's polarizabilities QCD + dynamical QED
- Nucleon Electric Dipole Moments
- CKM (K & B), Computer Algebra System for perturbation

$K \rightarrow \pi \pi$ decay on lattice

■ Relates energy on finite volume $E_{\pi\pi}$ (V) to phase shift δ to obtain complex Amp(K $\rightarrow \pi\pi$) = $|A_1| e^{i\delta I}$ (Luscher, Lellouch-Luscher)

- Momentum of pions are controlled by boundary condition (anti-periodic or G-parity b.c.)
- Mixing and Renormalization of operator is done using non-perturbative renormalization (NPR)
- Chiral Symmetry is curtail
- I=2 channel is under control, I=0 is still a challenge due to disconnected diagrams.

$K \rightarrow \pi \pi$ Amplitude, I=2 channel

2012 Ken Wilson Lattice Award

Lattice: $32^3 \times 64 \times 32$, 2+1 DWF, Iwasaki DSDR, $a^{-1} = 1.375(9)$ GeV, $m_{\pi^+} = 142.9(1.1)$ MeV

	ReA ₂	ImA_2
Lattice artifacts	15%	15%
Finite-volume corrections	6.2%	6.8%
Partial quenching	3.5%	1.7%
Renormalization	1.7%	4.7%
Unphysical kinematics	3.0%	0.22%
Derivative of the phase-shift	0.32%	0.32%
Wilson coefficients	7.1%	8.1%
Total	18%	19%

	${\sf Re}(A_2)(10^8/{ m GeV})$	${\sf Im}(A_2)(10^{13}/{ m GeV})$
Lat.	1.436(62)(258)	-6.83(51)(130)
Exp.	1.479(4) (K ⁺)	(n/a)

 ${\sf Re}(arepsilon'/arepsilon)_{
m EWP}=-6.52(49)(124) imes10^{-4}$

Errors: (stat)(syst)

Computing Group

- Group Leader : Taku Izubuchi (BNL)
- University Fellow : Brian Tiburzi (CCNY) Ethan Neil (Colorado)
- Fellow : Tomomi Ishikawa
- PostDocs : Christoph Lehner (Foreign PostDoc) → BNL from 2013 Eigo Shintani

(C. Kelly, S. Seryzin FPR from 2013)

• Visiting students :

Michael Abramczyk (Connecticut)

• Visiting scientists :

```
Yasumichi Aoki (Nagoya)

Thomas Blum (Connecticut)

Chulwoo Jung (BNL)

Taichi Kawanai (BNL/ RIKEN Brain PostDoc)

Meifeng Lin (Yale → Argonne)

Robert Mawhinney (Columbia)

Shigemi Ohta (KEK)
```

Hybrid Monte Carlo (LGT's "Accelerator")

- Monte Carlo to Sample Important configurations of QCD action $e^{-S_{ extsf{QCD}}}$
- Accumulate samples of QCD vacuum, typically $\mathcal{O}(100) \sim \mathcal{O}(1,000)$ files of gauge configuration $U_{\mu}(n)$ on disk (1 ~ 10 GB/conf).
- By solving a classical QCD, with an occasional stochastic ''hit'': ${\sf exactly} \propto e^{-S_{\sf QCD}}$
- Must generate sequentially $\{U_{\mu}^{(0)} \rightarrow U_{\mu}^{(1)} \rightarrow \cdots \}$, which needs capable machines.

$$\mathsf{Prob}(U_{\mu}) \propto \det D_{u,d,s}[U] e^{-S_g}$$

[D. Leinweber]

- RHMC for odd flavor [Clark Kennedy]
- Solve short (long) modes more (less) frequently [Hasenbush's trick]

Physics measurements "Detectors"

• Measurements physical observables on the vacuum ensemble.

$$\langle \mathcal{O}
angle = \int \underline{\mathcal{D} U_{\mu} \operatorname{\mathsf{Prob}}[U_{\mu}]} imes \mathcal{O}[U_{\mu}]$$

- Could do Analysis on many configurations independently (trivial parallel jobs) \longrightarrow could also use PC Clusters
- We made hadron operator (EW operators) from quark, and let the quark propagates on each of the generated QCD configuration (by solving the Dirac Eq)
- Obtain hadron mass or QCD matrix elements of operators

 $\langle 0|\bar{d}\gamma_5 u(0)|\pi\rangle \frac{e^{ipx}}{\sqrt{2E}} \langle \pi|\bar{u}\gamma_m u\gamma_5 d|0\rangle \times G_F V_{ud} m_\mu \bar{\nu}(1-\gamma_5)\mu$

 $\mathcal{M}(\pi \to \mu \overline{\nu}) \sim i f_{\pi} q_{\mu} \times G_F V_{ud} m_{\mu} (\overline{\nu} \mu)_L$

 $= \langle \pi(q) | \bar{u} \gamma_{\mu} \gamma_{5} d(0) | 0 \rangle \times G_{F} V_{ud} m_{\mu} (\overline{\nu} \mu)_{L}$

K_L-K_S mass difference [RBC/UKQCD, N. Christ, J. Yu et al. arXiv:1212.5931]

Evaluate K⁰-K⁰bar amplitude in 2nd order ElectroWeak Hamiltonian : 4pt Green's function

$$\mathscr{A} = \frac{1}{2} \sum_{t_2=t_a}^{t_b} \sum_{t_1=t_a}^{t_b} \langle 0|T\left\{\overline{K^0}(t_f)H_W(t_2)H_W(t_1)\overline{K^0}(t_i)\right\}|0\rangle.$$

<i>M_K</i> (GeV)	<i>∆ M_K</i> (x 10 ⁻¹² MeV)
563	5.12(24)
707	6.92(39)
918	11.12(94)
1162	20.10(312)

- $\Delta M_{\kappa}^{\text{expt}} = 3.483(6) \ 10^{-12} \text{ MeV}$
- Omit disconnected diagrams and Unphysical kinematics, m_{π} = 421 MeV
- charm quark for GIM cancellation
- 4pt function is useful for the rare Kaon decay : $K \rightarrow \pi \nu \nu$

QCD+QED simulation [T. Blum, TI et al.] [Tomomi Ishikawa]

EM effects on PS decay

- Statistically well resolved by +e/-e averaging.
- c.f. [Bijnens Danielsson 2006] $f_{\pi^+,\rm NLO}/F_0 = 0.0039$ $f_{K^+,\rm NLO}/F_0 = 0.0056$
- EM turned on, but mu = md
- Iwasaki-DWF Nf=2+1,
- (2.7 fm)³, a⁻¹ ~ 2.3 GeV

Proton / Neu	utron			ΕN	1 effect			$m_u - m_d$	EM
mass differe	nce		²	↔ Walker-l *-* Cottingh	Loud et al. 2012 am formula		NPLQCD	2.26(72)	
(m _u -m _d) effect	proton	neutron	1.5	 Nf=2 (1 Nf=2+1 	$(1.8 \text{ fm})^3$		BLUM PM122	2.51(71) 2.80(70)	0.54(24)
	u U (d d	MeV]	● Nf=2+1 △ Nf=2+1	$(2.7 \text{ fm})^3$ $(4.6 \text{ fm})^3 \text{DSDR}$	Ţ -	QCDSF-UKQCD	3.13(77)	
20 (a) -30 (a) -30 (b) -30 (c) -30	d	u	[] 1-1 E-d E			• _ • _		2.68(35)	0.54(24)
-70 -70 -80 -90	DSDR DWF Nf=2+1 (4.6 fm) ³ ,	1				 - -	$\implies M_N - M_p$	=2.14((42) MeV
0 10 20 30 40 50 60 (m _d -m _u)/Zm (MeV)	a ⁻¹ ~ 1.4 GeV		0	0.1 0. m	$n_{ps}^{2} [GeV^{2}]$ 0.4	0.5	(experiment: 1.	2933321	(4) MeV) $_{44}$

muon's anomalous magnetic moment

• One of the most precisely determined numbers, starting from the construction of QED.

• 287 ± 80 or 3.6σ difference between experiment and SM prediction.

E989 at FNAL is to reduce the total experimental error by, at least, a factor of four over E821, or 0.14 ppm !

FNAL new g-2

J-PARC

Hadronic Vacuum Polarization

Hadronic Light-by-Light [T. Blum, Hayakawa]

- Compute whole diagram using <u>lattice QCD+QED</u>
- LbL is a part of O(α3) : need subtraction
 [M. Hayakawa, T.Blum, TI, N. Yamada (2005)]

The First signal (preliminary) using AMA

 $F_2(Q^2)$ stable with additional measurements (20 ightarrow 40 ightarrow 80 configs)

24³ lattice size $Q^2 = 0.11$ and 0.18 GeV² $m_\pi \approx 329$ MeV $m_\mu \approx 190$ MeV

・ロト ・四ト ・ヨト ・ヨト 三日

- Very encouraging first results order of mag ~ model
- Unphysical mass / momentum
- Disconnected diagrams