Physics with Hard/Heavy Probes at SPHENIX/RHIC and Non-MIE Pre-Shower Detector

Kenta Shigaki (Hiroshima U.) 広島大学) July 30, 2013 s/ePHENIX Workfest at RIKEN

Presentation Outline

- highlights via hard/heavy probes (mostly) at LHC
 - e.g. parton energy loss and redistribution
 - parton initial energy tagging
- hard/heavy probes at RHIC: sPHENIX
- physics prospects of sPHENIX with inner detectors
 - e.g. flavor differential energy loss and redistribution
 - e.g. QCD Debye screening
- pre-shower detector
- sPHENIX-J activities and prospects
- summary

Insight into Quark-Gluon Plasma

via high p_T probes, e.g. jets, photon-jet correlation

recent highlights include:

- energy loss/redistribution of hard scattered parton
- photon-jet correlation: parton initial energy tagging

Jets at the LHC

asymmetric di-jets and even mono-jets

Iost jet energy distributed very widely

- $\Delta R > 0.8 \sim \pi/4$
- enhancement at low p_{T}

Jet Energy Loss and Redistribution

- $|\Delta \varphi \pi| < \pi/6 \quad |\Delta \varphi \pi| < \pi/3 \quad |\Delta \varphi \pi| < \pi/2$
- high z_T suppression in narrow cone
 - no corresponding enhancement at low z_{T}
- Iow z_T enhancement in wider cone

Survived Jets

• $\sigma(R=0.2)/\sigma(R=0.3)$ consistent with vacuum jets

- both for peripheral and central collisions
- no sign of jet broadening
- good agreement with a model with energy loss

PID'ed Singles for Flavor Differential

PHENIX and ALICE heavy flavor results consistent

charm+beauty decay electrons in semi-central collisions

next step: charm/beauty separation

Possible Mass Hierarchy

- charm and beauty mesons with compatible $< p_T$
 - open charm (average of D^0 , D^+ , D^{*+}), ALICE
 - non-prompt J/ Ψ (\leftarrow B), CMS
- indication of lower suppression of beauty
 - cf. PHENIX VTX result?

Quarkonia – Sequentially Melting?

s/ePHENIX Workfest – Hard/Heavy Probes at sPHENIX/RHIC – K.Shigaki

Physics Laborator

Forward Upsilons at ALICE

- forward Y at ALICE ~ mid-rapidity Y at CMS
 - for both central and semi-peripheral collisions

further systematic ALICE results awaited

Hard/Heavy Probes at LHC vs. RHIC

original sales points at higher energies

- demonstrated very powerful at ALICE/ATLAS/CMS

		Ph_Ph				parameter	unit	enhanced	achieved	next
		R	HIC	LHC	7.0			design		upgrade
	1 b				-5				2010	\geq 2012
		σ ^{Pb-Pb} tot			E			Au-Au operation		tion
۲						particle energy E	GeV/n		-100 -	
<u>0</u>		50			07	no of bunches N		— 111 —		
С		Of the t			5	bunch intensity N_b		1.1	1.1	$1.0 imes10^9$
ě	1 mb				<u>ت</u> ا	IP envelope function β^*	m	1.0	0.75	0.5
() ()		-		Sha I	1 Hz 😾	norm. rms emittance ϵ_n	mm∙mrad	2.5	2.8	2.5
ŝ		bb			0	rms bunch length σ_s	m	0.3	0.3	0.3
6	1μb			i Si	Ĕ I	hourglass factor h		0.96	0.93	0.88
ū		$= J \psi \rightarrow l^+ l^-$		Pi	2	beam-beam parameter ξ /IP	10^{-3}	1.6	1.5	1.5
				1	t t	peak luminosity L_{peak}	$cm^{-2}s^{-1}$	36	40	$55 imes 10^{26}$
				$Z \rightarrow l^{-1}$	1 mHz 🐻	average luminosity L_{avg}	$cm^{-2}s^{-1}$	8	20	$40 imes 10^{26}$
		$\Upsilon \rightarrow l^+ l^- M$	$\rightarrow lv/i$	/	Š	average polarization P	%			
			le la	/	ш	calendar time in store	%	60	53	55
					1	integrated L per week		300	650	$1300 \ \mu b$
	1	0 10 ²	10	0° 10⁴					•	
Energy (GeV)						W.Fischer, IPAC'10				

RHIC luminosity upgrade to give new opportunities
more flexibility with EBIS and beam cooling

RHIC/LHC from Heavy Ion Viewpoint

- highest energy ≠ optimum physics condition
- RHIC: dedicated to heavy ion (and spin) programs
 - wide collision energy range
 - ~10 < $\sqrt{s_{NN}}$ < 200 GeV
 - phase boundary; transition regime

- variety of collision systems including asymmetric
 - Au+Au, Cu+Cu, U+U, Cu+Au, d+Au, p+p (, p+Au, ...)
- high luminosity
 - <u>average</u> $30 \times 10^{26} \text{ cm}^{-2} \text{s}^{-1}$ (2011, Au+Au 200 GeV)
 - cf. LHC <u>peak</u> 5×10^{26} cm⁻²s⁻¹ (2011, Pb+Pb 2.76 TeV)
- good time allocation for heavy ion program
 - ave. 9.6 weeks (+ ave. 7.0 weeks of p+p) / year (runs 1–13)

Strategy Feedback from LHC to RHIC

- high p_T probes
 large acceptance
 - high luminosity
- full jet reconstruction = fast data collection
 - electro-magnetic + hadronic calorimeters
- e^{\pm} and γ ID

July 30, 2013

12

sPHENIX Basic Strategies

PHENIX

- fast, selective, precise
- mid/low p_{T}
- limited acceptance

sPHENIX

- fast, (selective,) precise
- high/mid p_{T}
- large acceptance

Non-MIE Inner Detectors

precise measurement of charged particles

- inside magnet/calorimeters
- tracking

ICAL OUTER

Tracking → **Jet Modification**

- transverse and longitudinal jet modifications
- \rightarrow energy loss and fragmentation
 - comparison between RHIC and LHC
 - model prediction of stronger effects at RHIC

- measurement in wide p_{T} range

Tracking → Heavy Flavor Jets

- charm/beauty hadron and tagged jet
- \rightarrow energy loss and fragmentation of heavy flavor
 - additional exams to models

Electron ID → Open Heavy Flavor

light (u, d, s), charm, and beauty quarks

- vertex + tracking + electron ID
- \rightarrow mass hierarchy question

Electron ID → QCD Debye Screening

- precise Y measurement separating excited states
- \rightarrow binding energy (average radius) dependence
- \rightarrow function of temperature (color Debye length) ?
 - comparison between RHIC and LHC

Species	∫Ldt	Events	$\langle N_{coll} \rangle$	Y(1S)	Y(2S)	Y(3S)
p+p	18 pb ⁻¹	756 B	1	805	202	106
Au+Au (MB)		50 B	240.4	12794	3217	1687
Au+Au (0–10%)		5 B	962	5121	1288	675

• ref. X.He, this afternoon

Single γ ID \rightarrow Direct γ -Jet Correlation

- rejection of double γ from hadron decay
- \rightarrow direct γ tagged jet: ultimate jet measurement
- \rightarrow direct γ : QCD reference process
 - wide $p_{\rm T}$ range from below 15 GeV/c to above 30 GeV/c

Double $\gamma \text{ ID} \rightarrow \text{High } p_T \text{ Neutral Mesons}$

- very high $p_T \pi^0$ suppression
 - present RHIC data up to 20 GeV/c \rightarrow ~ 40 GeV/c
 - \rightarrow constraints on energy loss models
 - \rightarrow check if different behavior at RHIC and LHC

sPHENIX Pre-Shower Detector

- design/simulation/R&D/prototyping
 - ongoing/planned activities in Japan, as well as in US
 - ref. Y.Akiba 7/29; K.Nagashima, E.Kistenev, this afternoon
 - cf. PHENIX MPC-EX
 - ref. J.Lajoie, 7/31
 - cf. sPHENIX internal Si tracker
 - ref. Y.Kwon, E.Mannel, this afternoon; A.Taketani, 7/31
- especially simulation studies in Japan
 - K.Nagashima (Hiroshima U.), this afternnon
 - "naga" = long, "shima" = island
 - many thanks to C.Pinkenburg
 - GEANT4 based simulation studies of pre-shower

Pre-Shower Design Parameters

- full azimuth, $|\eta| < 1$, radius ~ 65 cm (?)
 - between inner trackers and EM calorimeter
 - area ~ 6.2 m²
- tungsten absorber (~ 2 X₀)
- 1 (or 2?) layer(s) of Si pad/pixel
- *in case of* **1** layer of **2** (ϕ) × 50 (z) mm² at 65 cm
 - $\Delta \phi$ = 0.003, $\Delta \eta$ = 0.08 (at η = 0) 0.05 (at $|\eta|$ = 1)
 - ~ 62 k readout channels
- all parameters are very preliminary
- performance study and optimization needed

sPHENIX-J Activities/Prospects

- most of current PHENIX-J group
 - Hiroshima U. (Shigaki et al.), U. Tsukuba (Esumi et al.)
 - CNS Tokyo (Gunji et al.), Tsukuba U. of Tech. (Inaba), ...
- open minded technical collaborations
 - RIKEN Nishina Center (PHENIX VTX, sPHENIX tracker)
 - T.Ohsugi (spec. appoint. prof., Hiroshima U.)
 - world-class silicon detector expert
- funding efforts
 - (continuing)
 - US-DoE CDO would be very helpful

Summary

- hard/heavy probes demonstrated more and more
- sPHENIX: strategy feedback from LHC to RHIC
 - RHIC: optimum facility to explore heavy ion physics
 - keeping basic PHENIX strategies: fast, (selective,) precise
 - *plus:* higher p_T , larger acceptance
- strong physics case via high p_T electron/photon
 - to attack most interesting topics now at LHC/RHIC
 - highly regarded; aimed at sPHENIX day-1
- pre-shower detector for e[±] / h[±] / γ / π^0 identification
 - activities in Japan toward design/R&D/prototyping
 - ref. K.Nagashima, GEANT4 simulation, this afternoon

