



# ALICE Experiment -- Topics & upgrade plan --

Hideki Hamagaki for the ALICE Collaboration

Institute for Nuclear Study Graduate School of Science The University of Tokyo



#### Contents

- Introduction
- Heavy flavor in pp & Pb-Pb collisions
  - Production cross section of heavy quarks in pp
  - J/ $\psi$  yield versus  $N_{ch}$  in pp collisions
  - $-R_{AA}$  for D mesons
  - $R_{AA}$  for J/ $\psi~$  –- recombination
  - $v_2$  for D and J/ $\psi~$  -- charm thermalization
- Results from p-A collisions
  - Ridge in p-A collisions
- ALICE upgrade plan
- Summary



### INTRODUCTION

2013/08/01



#### LHC at CERN

circumference = 27 km (Yamanote-line = 35 km)  $\sqrt{s} = 14$  TeV for p + p  $\sqrt{s}_{NN} = 5.5$  TeV for Pb + Pb  $\sqrt{s}_{NN}$  at LHC = 28 x RHIC = 320 x SPS = 1000 x AGS













#### Startup of ALICE

- 2009/11/23: First pp collisions at 900 GeV
- 2010/3/31: pp collisions at 7 TeV
- 2010/11/8: Pb-Pb collisions at 2.76 TeV/A

 $dN_{ch}/d\eta \sim 6.0$ 







#### ALICE Run Summary

- pp collisions at  $\sqrt{s} = 7$  TeV in 2010– 2011
  - Int L = 16  $nb^{-1}$  (with INT trigger)
  - Int L = 4.9  $pb^{-1}$  for rare-event triggers with EMCAL, PHOS and MUON
- pp collisions at  $\sqrt{s} = 0.9$  and 2.76 TeV
  - Int L = 0.14 and 1.3  $nb^{-1}$ , respectively.
- Pb-Pb collisions at  $\sqrt{s_{NN}} = 2.76$  TeV in 2010 and 2011
  - Int L = 10  $\mu b^{-1}$  in 2010
  - An order of magnitude higher in 2011
  - Triggers in 2011
    - Most central and semi-central events, and rare event selection with EMCAL, MUON, and ultra-peripheral collisions
- p-Pb collisions at  $\sqrt{s_{NN}} = 5.02$  TeV in 2013
  - 4 TeV for the proton beam and 1.58 TeV per nucleon for *Pb* beam  $1.7 \times 10^8$  events



#### **Centrality Determination**

- In Pb-Pb, clear correlation between collision geometry (impact parameter) and experimental observables
  - Centrality measure, based on forward detectors
- ALICE
  - VZERO scintillator detectors
  - VZERO-A: 2.8 <  $\eta$  < 5.1 and VZERO-B: -3.7 <  $\eta$  < -1.7



2013/08/01

ALICE Experiment, presented in the PHENIX Workshop at RIKEN, Summer 2013



#### HEAVY FLAVOR IN PP & PB-PB COLLISIONS



### Heavy Quark Production in pp

- Two-gluon fusion process
- Copious production at LHC
  - Charm: ~5mb@2.76TeV (8.5mb@7TeV)
  - Bottom: ~0.3mb@7TeV





#### $\oint J/\psi$ production as a function of $dN_{ch}/dy$ in pp collisions at $\sqrt{s} = 7$ TeV

- $dN_{J/\psi}/dy$  depends almost linearly on  $dN_{ch}/dy$
- Not accounted for by the direct hard process, as implemented in Phythia 6.4
- Suggesting the effect of MPI (multi parton interaction) in ccbar production
  - c-cbar production is NOT be a very hard process at LHC?
- Further studies are interesting for Y, open charm, ...





2013/08/01

#### D Yield in pp Collisions

- $dN_D/dy$  is almost linearly dependent on  $dN_{ch}/dy$
- Similar trend to that for  $J/\psi$



## Exclusive D Meson Measurement



2013/08/01



- D has slightly larger  $R_{AA}$  over  $\pi$  and K in all  $p_T$  range, while behavior is similar
- Different behavior between  $\Lambda$  and mesons at  $p_T < 8$  GeV/c, consistent with the quark recombination picture



### $R_{AA}$ of D and non-prompt J/ $\psi$

- Non-prompt J/ψ from B decay
- Previous comparison in 2012:  $\langle p^{D}_{T} \rangle \neq \langle p^{B}_{T}^{(\rightarrow J/\psi)} \rangle$
- New comparison: compatible p<sub>T</sub> range for D and the parent B of non-prompt J/ψ
- $R_{AA}(np-J/\psi) > R_{AA}(D)$ 
  - Getting clear in the new comparison
  - Mass hierarchy in energy loss process



2013/08/01



### $D_s^+ vs D^{0,+}$

- Larger  $D_s/D$  ratio in Pb-Pb than in pp for  $p_T < 8$  GeV/c
- Qualitatively consistent with the quark recombination picture; additional D<sub>s</sub> production in Pb-Pb collisions





#### $J/\psi$ at SPS & RHIC

- $J/\psi$  suppression; proposed as a probe of deconfinement by T. Matsui and H. Satz (1985)
- Anomalous suppression was observed in Pb-Pb at SPS
- Suppression with a similar magnitude to SPS was observed at RHIC





#### Comparison with Models

RAA

0.8

0.6

0.4

L. Yan et al, PRL97 (2006) 232301

total

- Sequential melting
- Dynamical dissociation
- Quark recombination
- Not significant contribution from recombination process at RHIC





2013/08/01



- Sizable  $v_2(J/\psi)$  at LHC, in contrast to the case at RHIC
  - Non-prompt-J/ $\psi$  is ~7 % for  $p_{\rm T}$  < 12  $_{0.1}$  GeV/c from bottom decay
- Condition for finite  $v_2(J/\psi) =$ Recombination of charms with finite  $v_2$
- Consistent with the two model calculations
  - Both models assume charm is thermalized (and flows)
  - Two cases for bottoms: thermalized, and NOT thermalized
    - -> need more statistics to judge





### Open Charm v<sub>2</sub>

- Sizable v<sub>2</sub> of D mesons at LHC, suggesting rapid thermalization of charm
  - It also serves as a strong backup of the finite  $v_2(J/\psi)$

 Non-prompt J/ψ and D for investigating bottom thermalization will be the key measurement







#### **RESULTS FROM P-PB COLLISIONS**

2013/08/01

ALICE Experiment, presented in the PHENIX Workshop at RIKEN, Summer 2013

21



#### p-A Collisions

- Reference of the initial state of A-A collisions
  - Cold nuclear matter (CNM) effect
  - nPDF; possible gluon saturation
- Recent findings indicate that p-A may provide a unique circumstance to study early stage, the least known stage, in heavy ion collisions
  - Origin of fluctuations
  - Thermalization process; highly non-perturbative & nonequilibrium process
  - TO MY SURPRISE: Space-time evolution as an thermalized system??



#### p-Pb Runs at LHC

- $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 
  - 4 TeV p beam / 1.58 TeV per nucleon Pb beam
  - Rapidity shift of 0.465 (in proton-going direction)
- 2013 Feb./March run with both beam directions (p-Pb and Pb-p)
  - Low luminosity running; ~130 million MB events (50  $\mu$ b<sup>-1</sup>)
  - High luminosity running; ~30 nb<sup>-1</sup> (muon trigger ->  $J/\psi$ )
- A straightforward correlation between collision geometry and multiplicity is not found in p-Pb collisions
- Event classes are defined as percentiles of the measured sample
  - VZERO scintillator detectors to measure particle multiplicity;
    - $2.8 < \eta < 5.1$  and -3.7  $< \eta <$  -1.7
  - Only Pb direction (2013 analysis)





#### The Near-Side Ridge

- Well known feature in Pb-Pb collisions (→ collective flow)
- Observed in extremely highmultiplicity pp collisions by CMS
- Somehow expected in p-Pb, but still surprising, in particular, because of its amplitude





0.0005% of MB





#### The Double Ridge

- No ridge seen in 60-100% and similar to MB pp collisions
- Subtraction of (peripheral yield) from (central yield) to "isolate" ridge contribution from jet correlations



2013/08/01

#### Projections to $\Delta \phi$

- Modulation mostly of  $\cos 2\Delta \phi$  type
- Small but significant cos  $3\Delta\phi$  term needed

 $v_n = \sqrt{\frac{a_n}{b}}$ 

 Same procedure applied on HIJING simulated events → no significant modulation remains



#### $v_2$ and $v_3$ Coefficients

- v<sub>2</sub> and v<sub>3</sub> as a function of p<sub>T</sub> for different event classes (each 60-100% subtracted)
- V<sub>2</sub>
  - Strong increase with  $p_{T}$
  - Mild increase with multiplicity
  - V<sub>3</sub>
     Increase with p<sub>T</sub> within large uncertainties
- Similar results by ATLAS
- PHENIX reports similar v<sub>2</sub> values in d-Au at 200 GeV (arXiv: 1303.1794)





 $v_2$  of  $\pi$ , K, p

Mass ordering in  $v_2$ suggests collective flow in the hadronic phase, where mass is a factor to make  $v_2$ different



- Question is whether hydro is still applicable in a system with a transverse extension of a few fm?
  - Maybe so, since the effective interacting range in sQGP is less than 1 fm
  - Maybe NOT, since surface effect should be dominant ...

2013/08/01



#### ALICE UPGRADE PLAN

2013/08/01



#### Present ALICE program

#### 2013–14: Long Shutdown 1 (LS1)

- completion of TRD and CALs
- 2015: Pb–Pb at √s<sub>NN</sub> = 5.1 TeV
- 2016–17: (maybe combined in one year) Pb–Pb at  $\sqrt{s_{NN}} = 5.5$  TeV

#### 2018: Long Shutdown 2 (LS2)

- 2019: probably Ar–Ar high-luminosity run
- 2020: p–Pb comparison run at full energy
- 2021: Pb–Pb run to complete initial ALICE program

#### 2022 Long Shutdown 3 (LS3)

- Physics reach extended by the new energy and completion of TRD and CALs
- Improvement of statistical significance of our main results by a factor about 3 --- this is enough?



#### Scope of Upgrade

- Run ALICE at high rate, and inspect all events, in accord with the LHC luminosity upgrade; targeting 50 kHz minimum bias rate for Pb–Pb
- Upgrade detectors and electronics by the end of LS2 (2018), and run with upgraded program after LS2
  - Target: more than 10 nb<sup>-1</sup> of integrated luminosity, which implies running with heavy ions a few years after LS3 (2022)
  - A factor of >100 increase in statistics; (maximum readout with present ALICE ~ 500 Hz) for core physics programs
  - For triggered probes increase in statistics by factor > 10



#### Core physics motivation

- Main physics topics, uniquely accessible with the ALICE detector:
- Heavy-flavor transport parameters:
  - diffusion coefficient azimuthal anisotropy and  $R_{AA}$
  - in-medium thermalization and hadronization meson-baryon
  - mass dependence of energy loss  $R_{AA}$
- Low-mass and low-pt di-leptons
  - chiral symmetry restoration vector-meson spectral function
  - space-time evolution of the QGP radial and elliptic flow of emitted radiation
- J/ $\psi$  ,  $\psi$ ', and cc states down to zero  $p_T$  in wide rapidity range
  - charm and bottom thermalization R<sub>AA</sub>, elliptic flow
  - regeneration process central vs. forward production
- Jet quenching and fragmentation
- Heavy-nuclei, hyper-nuclei & exotics

^



#### ALICE detector upgrade

- High-luminosity operation without dead-time
  - Improved vertexing and tracking at low  $p_{\rm T}$
  - Preserve particle-identification capability
- Target for installation and commissioning LS2 (2018)
- LOI approved by LHCC, TDR in preparation:
  - New, smaller radius, beam pipe
  - Performance and rate upgrade of inner tracker (ITS)
  - Non-stop operation of TPC without gating grid; MWPC --> GEM
  - High-rate upgrade for the readout of the TPC, TRD, TOF, CALs, DAQ-HLT, Muon-Arm and Trigger detectors
- LOI in preparation:
  - MFT: b-tagging for J/ $\psi$ , low-mass di-muons

## Example: Heavy flavor production

- Bottom via non-prompt D<sup>0</sup> -> K +  $\pi$  = mass dependence of energy loss
  - needs precision of the new ITS
- $\Lambda_c$  = hadronization process; baryon-meson universality - needs both: the new ITS and luminosity ~ 10 nb<sup>-1</sup>





- Need >> 1 nb<sup>-1</sup> for precise measurement of charm and beauty  $v_2$
- Other key measurements:  $\Lambda_b$ ,  $\Xi_c$ , B decays, virtual  $\gamma$ ,  $\psi$ ',  $\chi_c$ , tagged jets...



#### **SUMMARY & OUTLOOK**

2013/08/01



#### Summary & Outlook

- ALICE has been producing rich results at full speed
- Various results on Open heavy flavor and Quarkonia
  - Exclusive D meson reconstruction
  - Energy loss and thermalization of heavy quarks in Pb-Pb
  - Recombination process for J/ $\psi$  production in Pb-Pb
- Interesting results in p-Pb collisions
  - p-Pb May NOT be a mere reference of initial state in Pb-Pb
  - Double ridge structure is an example
- Importance of data with higher statistics
- A major upgrade
  - Pb-Pb data with 50 kHz (= MB Pb-Pb rate after LHC intensity upgrade); ~100 times more than current (-500Hz)
  - New ITS (inner tracking system), GEM TPC with no gating grid, faster electronics and wider bandwidth ...



#### BACKUP

2013/08/01

#### Heavy Flavor as Probes

- Production = initial stage; pQCD
- High  $p_T \rightarrow$  energy loss
  - Dead-cone effect gluon radiation suppressed at small angles (q < m<sub>Q</sub>/E<sub>Q</sub>) Y. Dokshitzer, D. Kharzeev, PLB 519, 199 (2001), hep-ph/ 0106202
- Low to medium  $p_T \rightarrow$  thermalization

Gluon radiation probability:











 $R^{D}_{AA}/R^{\pi}_{AA}$  at LHC

• No large variation with  $p_{T}$ 

δp<sub>T</sub>/p<sub>T</sub> will be interesting to see





#### Flow Patterns in Pb-Pb

- For many it smells like flow, but does it flow?
- Particle identification allows further tests
- Particle-mass dependent effects emerge





#### **New Inner Tracking**

#### seven layers silicon tracker

pointing resolution improved ~ 3 times

very close to the interaction point – innermost layer 22 mm



inner barrel



#### **TPC** upgrade

- TPC continuous readout without gating grid
  - minimize ion feedback from amplification region
  - change MWPC readout to GEM readout
  - preserving tracking and particle identification capabilities
  - online calibration and data reduction in HLT
  - at 50 kHz of Pb–Pb interaction: reduction factor of ~ 25, event rate tape 25 kHz, throughput to mass storage 20 GB/s
- Event display





#### Typical Two-Particle Correlation in p-Pb Collisions



There is some thing more ... interesting



#### h-ID Correlations

- Typical features (NS + AS jet, ridge) also in h-π, h-K, h-p correlations
- Project to  $\Delta \phi$  with  $\eta$ -gap on NS
- Fit with 3 Fourier coefficients gives good description
  - Large first component due to recoil jet
- Near side: mostly ridge
- Away side: jet + ridge
  - affects also v<sub>2</sub>
- Allows to extract v<sub>n</sub> coefficients

ALICE V Experiment, n presented in the PHENIX 2013/08/01 Workshop  $= \sqrt{a_n / a_0}$ 

ALICE, arXiv:1307.3237







ALICE

Experiment

#### v<sub>n</sub> Coefficients

- First Fourier coefficients is mainly driven by recoil jet
  - Significant change in magnitude with subtraction (up to 10 times smaller)
- Second Fourier coefficient changes with subtraction by 20-40%
- NB. Subtraction removes also baseline (b) from 60-100%  $v_2 = \sqrt{a_2/(a_0 + b)}$



H1 and ZEUS

 $O^2 = 10 \text{ GeV}^2$ 

xd.

10<sup>-1</sup>

(a)

 $10^{-2}$ 

HERAPDF1.0 13p

HERAPDF1.0 + charm

HERA,

EPJC (2013) 73:2311

#### **Color Glass Condensate**

£

0.8

0.6

0.2

xg (×0.05)

10<sup>-3</sup>



- New scale: saturation scale
- Enhancement of "glasma" graph
- Calculation for p-Pb LHC by Dusling and Venugopalan (PRD 87, 094034 (2013))

Good agreement, no v<sub>3</sub> component, though



ALICE

ALICE Experiment, presented in the PHENIX Workshop at RIKEN, Summer 2013