Exotic rotational modes of nonexotic triaxial deformation in nculei

Department of Physics,

Tohoku University

T. Koike

- How exotic is an axially asymmetric shape in nuclei at the ground state?
- What is the issue here?
 - Soft v.s. Rigid in the ground states
- Why bother?
 - How is it related to the overall physics?

Contents

- Rigid v.s. soft triaxaility
- Exotic rotational modes related to triaxiality

High spin/Cranking (PAC) regime

medium spin

- Wobbling
- Smooth band termination .
- Signature Inversion
- Chiral doublets
- Possible experimental idea at J-PARC
- Summary

Plane of Quadrupole Deformation

Hamiltonian

Quantum Mechanical rotation

$$H_{rot} = \sum_{k=1}^{3} \frac{\hbar^2}{2J_k} R_k^2$$

For an axially symmetric rotor, rotation is only possible around the axis perpendicular to the symmetry axis

$$J_x \neq 0$$
, and $J_y = J_z = 0$

Y. Fujioka , Master Thesis, Kyusyu University, (2012)

Triaxial rotor + irrotational flow moment of inertia

Axis length $R_{k} = R_{0} \left[1 + \sqrt{\frac{5}{4\pi}} \beta \cos\left(\gamma - \frac{2\pi}{3}k\right) \right]$ Moment of Inertia $J_{k} = \frac{4}{3} J_{0} \sin^{2} \left(\gamma - \frac{2\pi}{3} k \right) \qquad k=1,2,3$

Global calculations of ground–state triaxiality

Two extreme models of axial asymmetry

N. Z. Zamfier and R. Casten, Phys. Lett. B, 260, 265 (1991)

Two extreme models of axial asymmetry

$$S(I) = \frac{[E(I) - E(I-1)] - [E(I-1) - E(I-2)]}{E(2_1^+)}$$

http://t2.lanl.gov/nis/data/astro/ molnix96/peseps2gamma.html

PAC regime

- Principal Axis Cranking (PAC)
 - Rotation about the principle axis
- Labeling of a band with parity and signature (π, α)
 - $-\alpha$ is additive
- Favoured and unfavoured signature band
 - Favoured signature: $e^{-i\pi j}$
 - Unfavoured signature: $e^{i\pi j}$

Cranking Hamiltonian

$$H^{\omega} = \sum h^{\omega} = \sum (h - \hbar \omega j_x)$$

Symmetry of Cranking Hamiltonian

 $R_{\chi}(\pi) = e^{-i\pi j_{\chi}}$

Signature Quantum Number

$$r = e^{-i\pi\alpha}$$
$$I = \alpha \bmod 2$$

Ι	α	r
0,2,4,6,	0	+1
1,3,5,7,	1	-1
1/2,5/2,9/2,13/2,	+1/2	-i
3/2,7/2,11/2,15/2,	-1/2	+i

High Spin Frontier Cranking (PAC) domain

Wobbling Modes Smooth Band Termination

Wobbling mode

- Q.M. rotation of triaxail body
 - asymmetric top in clasical analogue
- Wobbling of triaxial body around the total angular momentum
- First observation in ¹⁶³Lu
 - S.W. Odegard *et al*, PRL 86 5866 (2001)
- Experimentally established stable triaxial deformation at high spin (cranking regime)
 - Lu isotopes (161,163,165, and 167)
 - Large mixing ratio of the interband transition (dominantly of E2 character)
 - Band configurations based on the cranking calculations (ultimate cranker)
 - *EM* transitions calculated by particle rotor model

D. R. Jense et al, PRL89, 142503 (2002)

Smooth band termination

- Gradual (smooth) restoration of rotational symmetry
 - Collective to single particle degrees of freedom
 - Change of shape from prolate to oblate via the *triaxial* plane
- High spin extreme
 - PAC is a good approximation
 - Little influence of pairing
 - rigid body moment of inertia
- First observation in 1994
 - P.V. Janzen et al, PRL 72, 1160 (1994)
 - 20 (Ge + ACS) + 71 BGO filters at Chalk River Lab.
 - Many cases identified in the mass A
 ~100 region (Gammaspher, Euroball)

A.V. Afanasjev and D.B. Fossan et al, Physics Reports 322 (1999)

¹⁰⁹Sb

Restoration of broken symmetry

Medium spin

Signature Inversion Chiral Doublet

Signature inversion

- Unfavored signature states lowered in energy than the favoured ones over some spin range
 - signature order inverted
- Systematically observed in the (transitional)mass A∼130 and 160 region
 - With q.p. configurations
- Suggested role of trixaility and *pn* interaction
 - N. Tajima, Nuclear Physics A572 (1994) 365

$$S'(I) = \frac{E(I) - E(I-1)}{2I}$$

Y. Liang et al, PRC 42, 890 (1990) S. Wang et al, PRC 74, 017302 (2006)

Chiral doublet bands

S.Frauendorf and J.Meng, NPA617, 131 (1997)

Collective core: Moment of inertia

$$J_{k} = \frac{4}{3}J_{0}\sin^{2}(\gamma - \frac{2\pi}{3}k)$$

Chirality

 $[O, H] = 0, O = TR_{y}(\pi)$ $H | R \rangle = \varepsilon_{R} | R \rangle, H | L \rangle = \varepsilon_{L} | L \rangle,$ $| R \rangle = O | L \rangle, | L \rangle = O | R \rangle,$

 $\mathcal{E}_{\mathsf{R}}=\mathcal{E}_{\mathsf{L}}$

 $\mathcal{E}_{+}^{IM} = \mathcal{E}_{-}^{IM}$

$$\begin{split} |IM +\rangle &= \frac{1}{\sqrt{2}}(|\mathcal{R}\rangle + |\mathcal{L}\rangle), \\ |IM -\rangle &= \frac{0}{\sqrt{2}}(|\mathcal{R}\rangle - |\mathcal{L}\rangle), \\ H |IM \pm\rangle &= \varepsilon_{\pm}^{IM} |IM \pm\rangle, \\ \mathcal{O} |IM \pm\rangle &= |IM \pm\rangle, \end{split}$$

Different from Parity T: time reversal operator anti-linear

Why bother ?

Exotic collective modes in senses of

- numbers and kinds of symmetry broken spontaneously in a fermionic many-body system
- strong coupling of collective and two singleparticle degrees of freedom

SSB					O.P. ANG spectrum		
	$R_z(\phi)$	$R_z(\pi)$	Р	$TR_y(\pi)$			
空	•				β_2	回転 (帯)	$I^+, (I+2)^+, (I+4)^+ ,$
	•	•			β_2, θ	回転 (帯)	$I^+,(I+1)^+,(I+2)^+,\!$
	•	•	$\bullet(R_z(\pi))$		β_2, β_3	パリティ2重項(帯)	$I^+,(I+1)^-,(I+2)^+,$
間	•	•		•	β_2, γ	カイラル 2 重項 (帯)	$2{\times}(I^+,(I+1)^+,(I+2)^+,{\dots}$)
					θ, ϕ		
非	$R_{z_g}(\phi)$	$R_{z_g}(\pi)$					
空間	•				Δ	対回転(帯)	$N, N{\pm}2, N{\pm}4,$

T. Koike, *Genshikau Kenkyu* Vol.53, Sup.3, April (2009) based on the Table II. by S. Faruendorf, Rev. Mod. phys. 73, 463, (2001)

The first systematic observation of chiral candidates

K. Starosta et al., Phys. Rev. Lett **86**, 971 (2001)

	$A \sim 130$				A ~ 105		
Nucleus	s.p. config.		E.M.	Nucleus	s.p. config.		E.M.
¹⁴⁰ Eu	$\pi h_{11/2} \nu h_{11/2}$	odd-odd		^{106}Ag	$\pi g_{9/2} \nu h_{11/2}$	odd-odd	
¹³⁸ Eu	$\pi h_{11/2} \nu h_{11/2}$	odd-odd		¹⁰⁵ Ag	$\pi g_{9/2} \nu h_{11/2}^2$	odd-A	
¹³⁸ Pm	$\pi h_{11/2} \nu h_{11/2}$	odd-odd		106 Rh	$\pi g_{9/2} \nu h_{11/2}$	odd-odd	
136 Pm	$\pi h_{11/2} \nu h_{11/2}$	odd-odd		105 Rh	$\pi g_{9/2} \nu h_{11/2}^2$	odd-A	
¹³⁵ Nd	$\pi h_{11/2}^2 \nu h_{11/2}$	odd-A	yes[3]	104 Rh	$\pi g_{9/2} \nu h_{11/2}$	odd-odd	yes[6]
¹³⁴ La	$\pi h_{11/2} \nu h_{11/2}$	odd-odd		103 Rh	$\pi g_{9/2} \nu h_{11/2}^2$	odd-A	yes[6]
¹³² La	$\pi h_{11/2} \nu h_{11/2}$	odd-odd	yes	102 Rh	$\pi g_{9/2} \nu h_{11/2}$	odd-odd	
¹³⁴ Pr	$\pi h_{11/2} \nu h_{11/2}$	odd-odd	yes[4]	112 Ru	$\nu h_{11/2}(d_{5/2}, g_{7/2})$	even-even	
¹³² Pr	$\pi h_{11/2} \nu h_{11/2}$	odd-odd		110 Ru	$\nu h_{11/2}(d_{5/2}, g_{7/2})$	even-even	
128 Pr	$\pi h_{11/2} \nu h_{11/2}$	odd-odd		108 Ru	$\nu h_{11/2}(d_{5/2}, g_{7/2})$	even-even	
^{132}Cs	$\pi h_{11/2} \nu h_{11/2}$	odd-odd		¹⁰⁰ Tc	$\pi g_{9/2} \nu h_{11/2}$	odd-odd	
¹³⁰ Cs	$\pi h_{11/2} \nu h_{11/2}$	odd-odd		¹⁰⁶ Mo	$\nu h_{11/2}(d_{5/2}, g_{7/2})$	even-even	
^{128}Cs	$\pi h_{11/2} \nu h_{11/2}$	odd-odd	yes[5]				
¹²⁶ Cs	$\pi h_{11/2} \nu h_{11/2}$	odd-odd					
^{124}Cs	$\pi h_{11/2} \nu h_{11/2}$	odd-odd					
	A ~ 190				$A \sim 80^{**}$		
Nucleus	s.p. config.		E.M.	Nucleus	s.p. config.		E.M.
188 Ir [†]	$\pi h_{9/2} \nu i_{13/2}$	odd-odd		80 R r	$\pi g_{9/2} \nu g_{9/2}$	odd-odd	
¹⁹⁸ Tl	$\pi h_{9/2} \nu i_{13/2}$	odd-odd			$\pi g_{9/2}^2 \nu g_{9/2}$	odd-A	

T.Koike NPA834 (2010) 36c

Weak coupling limit: chopstick mode

K. Higashiyama et al., PRC72, 024315 (2005)

Remarks

- Coupling of single particle and collective rotation seems to enhance salient features of triaxial mass distribution, especially of shape driving unique parity high-j intruder orbitals $(h_{11/2}, i_{13/2})$
- Regardless of interpretation, level degeneracy is obtained by several theoretical calculations for an ideal case of chiral geometry: almost model independent
- The systematic observation of ∆I=I doublet bands in different mass region and configurations needs to be clarified
 - Strong coupling limit interpretation: chiral geometry
 - Weak coupling limit interpretation: chopstic mode

Trixailaity in *sd*-shell: ²⁴Mg

 $E(2_2^+)/E(2_1^+)=3.0$ $\Rightarrow \gamma=22^\circ$

HyperAMD calculation: ${}^{25}_{\Lambda}Mg$

M.Isaka et al., Phys. Rev. C85,034303 (2012)

M.Isaka et al., Phys. Rev. C85,034303 (2012)

Summary

- Global calculation of the ground state indicates triaxial deformation in the ground states is NOT exotic
- Experimental verification of *static* deformation has yet to be established
 - Recent evidence:⁷⁶Ge
- Exotic rotational modes involving triaxial mass distribution
 - Wobbling : strongest evidence
 - Smooth band termination: smooth transition of prolate to oblate shape via triaxial deformation
 - Signature inversion: deviation from axially symmetric limit
 - Chiral doublets: experimental verification debated, but the newest addition to triaxial rotation (fully 3D rotation); most exotic in terms of spontaneous symmetry breaking
- Examination of ²⁴Mg using Λ -hyperron as a probe at J-PARC