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Spin and pseudospin symmetries

Spin symmetry (SS) breaking, i.e.,

remarkable spin-orbit splitting in

(n, l , j = l ± 1/2)

Haxel:1949, Mayer:1949

Pseudospin symmetry (PSS), i.e.,

near degeneracy in{
(n − 1, l + 2, j = l + 3/2)

(n, l , j = l + 1/2)

by defining

(ñ = n− 1, l̃ = l + 1, j = l̃ ± 1/2)
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In shell model scheme
No spin-orbit coupling ⇒ total spin S a good quantum number ⇒ LS extreme ×
No pseudo s.o. coupling ⇒ total spin S̃ a good quantum number ⇒ L̃S̃ extreme

Hecht & Adler, NPA 137, 129 (1969); Arima, Harvey, Shimizu, PLB 30, 517 (1969)
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From spin scheme to pseudospin scheme

From spin scheme to pseudospin scheme

Hψ = Eψ with H =
p2

2M
+ V (r) + W (r)l · s

(UHU†)Uψ = EUψ with UHU† =
p2

2M
+ Ṽ (r) + W̃ (r )̃l · s̃

Special ratio for vsl/vll , e.g., Ur = s · r̂

H = HHO + vll l
2 + vls l · s

H̃ = H̃HO + vll l̃
2

+ (4vll − vls )̃l · s̃

? Parameters for the modified oscillator potential.

Bohr, Hamamoto, Mottelson, Phys. Scr. 26, 267 (1982)

Region −vls −vll −ṽls
50 < Z < 82 0.127 0.0382 0.026
82 < N < 126 0.127 0.0268 -0.019
82 < Z < 126 0.115 0.0375 0.035
126 < N 0.127 0.0206 -0.045
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PSS in deformed nuclei

Single-particle states: [NnzΛ]Ω & [NnzΛ + 2]Ω + 1 ⇒ [ÑnzΛ]

with Ñ = N − 1, Λ̃ = Λ + 1,Ω = Λ̃± 1/2

Rotational bands: from Λ̃ΩIM coupling to Λ̃R̃ IM coupling

Bohr, Hamamoto, Mottelson, Phys. Scr. 26, 267 (1982) ? g.s. & neighboring bands in 187Os

Data: Bruce et al., PRC 56, 1438 (1997)
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PSS in shell structure evolutions

? Proton single-particle energies for 146Gd
Long, Nakatsukasa, Sagawa, Meng, Nakada, Zhang,

PLB 680, 428 (2009)

? Pseudospin-orbit splitting in Sn isotopes

Meng, Sugawara-Tanabe, Yamaji, Arima PRC 59, 154 (1999)

Splitting of both spin and pseudospin doublets play important roles in the shell

structure evolutions.

It is a fundamental task to explore the origin of SS and PSS, as well as the

mechanism of their breaking.
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Intruder states in PSS

Spin symmetry (SS) breaking, i.e.,

remarkable spin-orbit splitting in

(n, l , j = l ± 1/2)

Haxel:1949, Mayer:1949

Pseudospin symmetry (PSS), i.e.,

near degeneracy in{
(n − 1, l + 2, j = l + 3/2)

(n, l , j = l + 1/2)

by defining

(ñ = n− 1, l̃ = l + 1, j = l̃ ± 1/2)

Arima:1969, Hecht:1969
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The intruder states do not have their own pseudospin partners.
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Intruder states in PSS

Spin symmetry (SS) breaking, i.e.,

remarkable spin-orbit splitting in

(n, l , j = l ± 1/2)
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(n − 1, l + 2, j = l + 3/2)

(n, l , j = l + 1/2)

by defining
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The intruder states do not have their own pseudospin partners.

⇒ Supersymmetric (SUSY) quantum mechanics

Leviatan, PRL 92, 202501 (2004); Typel, NPA 806, 156 (2008)
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Supersymmetric quantum mechanics

SUSY quantum mechanics (I)

Every second-order Hamiltonian can be factorized in a product of two Hermitian
conjugate first-order operators Infeld:1951, Cooper:1995

H1 = B+B−.

The Hermitian operators Q1 and Q2 called supercharges read

Q1 =

(
0 B+

B− 0

)
, Q2 = iQ1τ =

(
0 −iB+

iB− 0

)
.

The supersymmetric Hamiltonian

HS = Q2
1 = Q2

2 =

(
H1 0
0 H2

)
is obtained with the supersymmetric partners

H1 = B+B− and H2 = B−B+.
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Supersymmetric quantum mechanics

SUSY quantum mechanics (II)

Since HS is the square of the Hermitian operators Qi , all eigenvalues ES(n) of the
eigenvalue equation are non-negative

HSΨS(n) = ES(n)ΨS(n)

with the two-component wave function

ΨS(n) =

(
ψ1(n)
ψ2(n)

)
.

H1 and H2 have the same spectrum of positive energies ES(n) > 0.

Operators B+ and B− connect the components of the wave function by

ψ2(n) =
B−√
ES(n)

ψ1(n), ψ1(n) =
B+√
ES(n)

ψ2(n).



Introduction Theoretical Framework Results and Discussion Summary and Perspective

Supersymmetric quantum mechanics

SUSY quantum mechanics (III)

The supersymmetry is called exact if there is an eigenstate ΨS(0) with energy
ES(0) = 0.

As usual convention, this ground-state obeys

B−ψ1(0) = 0, ψ2(0) = 0,

i.e., H1 has an additional state at zero energy that is not appearing in H2.
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SUSY for Schrödinger equations

Schrödinger equations without spin-orbit term

Starting point: Schrödinger equations without spin-orbit term[
− 1

2M
∇2 + V (r)

]
ψ(r) = Eψ(r).

For the spherical symmetry,

HRa(r) = EaRa(r)

with the Hamiltonian and wave functions

H = − d2

2Mdr 2
+
κ(κ + 1)

2Mr 2
+ V (r), ψα(r) =

Ra(r)

r
Y l

jm(r̂),

where κ = ∓(j + 1/2) for j = l ± 1/2 as adopted in the relativistic framework.

H has an explicit spin symmetry (SS).

To investigate the pseudospin symmetry (PSS) and its breaking, the critical point is

to identify the l̃ (̃l + 1) = κ(κ− 1) term.

One of the promising tricks is the SUSY quantum mechanics. Typel, NPA 806, 156 (2008)
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SUSY for Schrödinger equations

SUSY for Schrödinger equations (I)

SUSY for Schrödinger equations without spin-orbit term

H = − d2

2Mdr 2
+
κ(κ + 1)

2Mr 2
+ V (r)

Two Hermitian conjugate first-order operators

B+
κ =

[
Qκ(r)− d

dr

]
1√
2M

, B−κ =
1√
2M

[
Qκ(r) +

d

dr

]
,

SUSY partner Hamiltonians

H1 = B+
κ B
−
κ =

1

2M

[
− d2

dr 2
+ Q2

κ − Q ′κ

]
,

H2 = B−κ B
+
κ =

1

2M

[
− d2

dr 2
+ Q2

κ + Q ′κ

]
.
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SUSY for Schrödinger equations

SUSY for Schrödinger equations (II)

Furthermore, setting the reduced supermomenta

qκ(r) = Qκ(r)− κ

r
,

so that the SUSY partner Hamiltonians read

H1 = B+
κ B
−
κ =

1

2M

[
− d2

dr 2
+
κ(κ + 1)

r 2
+ q2κ +

2κ

r
qκ − q′κ

]
,

H2 = B−κ B
+
κ =

1

2M

[
− d2

dr 2
+
κ(κ− 1)

r 2
+ q2κ +

2κ

r
qκ + q′κ

]
.

The centrifugal barrier term κ(κ + 1) leading to SS appears in H1.

The pseudo-centrifugal barrier term κ(κ− 1) leading to PSS appears in H2.
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SUSY for Schrödinger equations

Energy shifts

H and H1 are connected by
H1(κ) + e(κ) = H

with the energy shifts e(κ) to be determined.

It is equivalent that

1

2M

[
q2κ(r) +

2κ

r
qκ(r)− q′κ(r)

]
+ e(κ) = V (r),

so that qκ(0) = 0 and limr→0 qκ(r) = 2M(e(κ)−V )
(1−2κ) r with regular potential V (r).

Energy shifts for PS doublets (κ + κ′ = 1)
? For κ < 0, since the exact SUSY is achieved, it is required E1(κ) = 0, i.e.,

e(κ) = E1κ.

? For κ > 0, to fulfill limr→0 qκ(r) = limr→0 qκ′(r), it is required Typel:2008

e(κ) = 2 V |r=0 − e(κ′).
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SUSY for Schrödinger equations

Exact PSS limits

The exact PSS limits indicate Enκ1 = E(n−1)κ2, it is required

H2(κ1) + e(κ1) = H2(κ2) + e(κ2),

i.e.,
1

2M

[
q2κ1(r) +

2κ1
r
qκ1(r) + q′κ1(r)

]
+ e(κ1) =

1

2M

[
q2κ2(r) +

2κ2
r
qκ2(r) + q′κ2(r)

]
+ e(κ2)

q′κ1(r) = q′κ2(r)

Since qκ(0) = 0, this leads to qκ1(r) = qκ2(r), and finally

qκ1(r) = qκ2(r) =
A

2
ω{κ1,κ2}r with constants A ≡ 2M , ω{κ1,κ2} ≡

e(κ1)− e(κ2)

κ2 − κ1
.

This indicates the only possible PSS limits in the Schrödinger equations without

spin-orbit term are those with harmonic oscillator (HO) potentials

VHO(r) =
A

4
ω2
{κ1,κ2}r

2 + V (0).

cf. H = HHO + vll l
2 + vls l · s; H̃ = H̃HO + vll l̃

2
+ (4vll − vls )̃l · s̃ Bohr:1982
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Single-particle energies and pseudospin-orbit splittings
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? Left: Woods-Saxon potential for 132Sn and bound single-neutron energies.

Right: pseudospin-orbit splittings (Ej̃< − Ej̃>)/(2̃l + 1) vs (Ej̃< + Ej̃>)/2.

HL, Shen, Zhao, Meng, PRC 87, 014334 (2013)

How to understand the amplitudes of PSS splittings?

Why do pseudospin-orbit splittings ∆EPSO decrease as single-particle energies Eav

increase?
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Normal representation

Single-particle wave functions

Normal representation

� � � � 	 � � � �

� � � �

� � � �

� � �

� � �

� � �

� � �
� � �

� � �
� � �

� � �
� � �

� � �
� � �

� � �
� � � � � � � � � �

�
�

��
��

��
��

��
�

� � � � � �

? Single-particle wave functions of the 3s1/2, 2d3/2, 2d5/2, and 1g7/2 states.

Wave functions of spin doublets are exact the same since there is no spin-orbit term.

However, wave functions of the PS doublets are very different to each other, so it is

difficult to analyze the origin of PSS and its breaking.
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Normal representation

Implicit PSS limit: Schrödinger equations with HO potentials

Perturbative interpretation of PSS by using Rayleigh-Schrödinger perturbation theory

HL, Zhao, Zhang, Meng, Giai, PRC 83, 041301(R) (2011)

Hamiltonian can be divided as

H = HHO
0 + W HO

? HHO
0 leading to PSS

? W HO symmetry breaking potential
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HHO
0 = − 1

2M

[
d2

dr 2
+
κ(κ + 1)

r 2

]
+

A

4
ω2r 2 + V (0)
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Normal representation

Validity of perturbation theory and perturbation corrections
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HL, Shen, Zhao, Meng, PRC 87, 014334 (2013)

The biggest perturbations ∼ 0.13.

Pseudospin-orbit splittings are reproduced by the 3rd-order perturbation calculations.

Conclusion
The nature of PSS is perturbative, and its breaking can be understood in such implicit way.
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SUSY representation

Reduced supermomenta

SUSY representation
1

2M

[
q2κ(r) +

2κ

r
qκ(r)− q′κ(r)

]
+ e(κ) = V (r)
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? Reduced supermomenta qκ(r) for the s1/2, d3/2, d5/2, and g7/2 blocks.

qκ(r) are block-dependent.

Asymptotic behaviors: limr→0 qκ(r) = 2M(e(κ)−V )
(1−2κ) r and limr→∞ qκ(r) =

√
−2Me(κ).
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SUSY representation

Central potentials in SUSY partner Hamiltonians
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? Central potentials Ṽκ(r) in H̃ = H2 + e(κ) for the p̃1/2, p̃3/2, f̃5/2, and f̃7/2 blocks.

HL, Shen, Zhao, Meng, PRC 87, 014334 (2013)

Ṽκ(r) = V (r) + q′κ(r)/M are regular and block-dependent.

Asymptotic behaviors: limr→0 Ṽκ(r) = V + 2(e(κ)−V )
(1−2κ) and limr→∞ Ṽκ(r) = 0.
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SUSY representation

Single-particle energies of SUSY Hamiltonians
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? Single-particle energies of both H and H̃ for the s1/2, d3/2, d5/2, and g7/2 blocks.

H and H̃ have identical spectra, expect an additional eigenstate with E1 = 0,

corresponding to the states without pseudospin partners.

The pseudospin-orbit splittings ∆EPSO can be explicitly understood as the splitting

appearing in H̃ with the SUSY representation.
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SUSY representation

Single-particle wave functions in H̃

Wave function transformation: ψ2(n) = B−√
ES(n)

ψ1(n)
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? Single-particle wave functions in H and H̃ of the 2p̃1/2, 2p̃3/2, 1f̃5/2, and 1f̃7/2 states.

Single-particle wave functions of PS doublets are almost identical to each other.

It is a natural result as they are quasi-degenerate.
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SUSY representation

Explicit PSS limit: symmetry conserving and breaking terms

SUSY Hamiltonian can be divided as

H̃ = H̃PSS
0 + W̃ PSS

where

? symmetry conserving term

H̃PSS
0 =

1

2M

[
− d2

dr 2
+
κ(κ− 1)

r 2

]
+ ṼPSS

? symmetry breaking term

W̃ PSS = κṼPSO

ṼPSO(r) with amplitudes of ∼ 1 MeV are

negative inside and positive outside.

This is why ∆EPSO decrease as main

quantum numbers n increase.

HL, Shen, Zhao, Meng, PRC 87, 014334 (2013)
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SUSY representation

General pattern of PSO splittings
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? Left: R̃2(r) for the 1p̃1/2, 2p̃1/2, and 3p̃1/2 states.

Right: κṼPSO(r)R̃2(r) for the 1p̃1/2, 2p̃1/2, and 3p̃1/2 states.

Main quantum numbers n increase ⇒ wave functions R̃(r) move outward

⇒ EPSO =
∫
κṼPSO(r)R̃2(r)dr decrease
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SUSY representation

Validity of perturbation theory and perturbation corrections
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Pseudospin-orbit splittings are reproduced by the 1st-order perturbation calculations.

Conclusions

The nature of PSS is perturbative. In the SUSY representation H̃ :

? both single-particle energies and wave functions of PS doublets are quasi-degenerate.

? W̃ PSS can be explicitly identified.

? shape of W̃ PSS ⇒ ∆EPSO decrease as main quantum numbers n increase
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Summary and Perspectives

Summary

F We deem it promising to understand PSS and its breaking mechanism in a fully

quantitative way by combining the similarity renormalization group (SRG) technique,

SUSY quantum mechanics, and perturbation theory.

X SRG: to transform the Dirac Hamiltonian into a Schrödinger-like form yet keeping all

operators Hermitian.

X SUSY: to identify the PSS conserving and breaking terms naturally; to clarify the

reason why the intruder states have no pseudospin partners.

X Perturbation theory: to understand the behavior of pseudospin-orbit splitting in a

quantitative way.

Perspectives

?′ Schrödinger equations with spin-orbit term Shen, HL, Zhao, Zhang, Meng, in preparation

?′ Dirac equations and/or Schrödinger-like equations

?′ Why ∆EPSO . ∆ESO in realistic nuclei?

?′ ......
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