B01 : ESPRI experiment and the neutron skin of ¹³²Sn

proton elastic scattering of unstable nuclei

Juzo ZENIHIRO, RNC

Contents

- 1. Symmetry energy vs N-skin
- 2. Pre-ESPRI
- 3. ESPRI project
- 4. ESPRI detectors
- 5. Experiments
- 6. ESPRI at RIBF

1. Symmetry energy and neutron skin thicknesses

Extraction of proton & neutron density distributions from proton elastic scattering

Nuclear matter EOS with isospin asymmetry δ

EOS of nuclear matter $E(\rho, \delta)$: the energy per nucleon

$$\Xi(\rho,\delta) = E(\rho,0) + S(\rho)\delta^2 + O(\delta^4)$$

• EOS of symmetric nuclear matter $E(\rho,0)$: $\mathsf{E}(\rho,0) = \mathsf{E}(\rho_{\text{sat}},0) + \frac{K_0}{2}\varepsilon^2 + O(\varepsilon^3) \qquad \Rightarrow \ \mathsf{E}(\rho_{\text{sat}},0) \sim -16 \text{ MeV}, \\ K_0 \sim 240 \text{ MeV}$

The sympletry energy
$$S(\rho)$$
:
 $S(\rho) = S(\rho_{sat}) + L\varepsilon + \frac{K_{sym}}{2}\varepsilon^2 + O(\varepsilon^3) \rightarrow Still less certain !$

$$\delta = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}, \ \varepsilon = \frac{\rho - \rho_{\text{sat}}}{3\rho_{\text{sat}}}$$

Symmetry energy vs. Neutron skin

公募研究交流会

Symmetry energy experiments

- SAMURAI-TPC (SPiRIT) : π+/π- ratio
 HI collision (Sn isotope?)
- (p, p') at 0 degree : dipole polarizability
 proton inelastic scattering (²⁰⁸Pb, ⁹⁰Zr, etc.)
- PREX-II, CREX : neutron radius & skin thickness (²⁰⁸Pb, ⁴⁸Ca)
 - parity-violating electron elastic scattering
 - Stable nuclei : ²⁰⁸Pb, ⁴⁸Ca (2015, 2016)
- ESPRI : neutron radius & skin thickness
 - proton elastic scattering
 - Stable & unstable nuclei
 - Pb, Sn, Zr, Ca, ¹³²Sn, ^{66,70}Ni

2. pre-ESPRI

Polarized proton elastic scattering at **300MeV** (Ring cyclotron facility at RCNP, Osaka University) \Rightarrow We have succeeded in extracting neutron density distributions of Sn, Pb isotopes systematically.

3. ESPRI

ESPRI : Elastic Scattering of Protons from RI beam

Physics motivations:

Extraction of **p** & **n** densities of unstable nuclei from *p*-RI elastic scattering measurements

- 1. Asymmetric nuclear matter EOS study through neutron skin measurements
 - \rightarrow medium-heavy nuclei
- 2. Structure study (cluster, skin, halo, etc.)
 - \rightarrow light nuclei

Achievements :

- 1. Development of the detector system for inverse kinematics.
- 2. Measurements of angular distributions of cross sections of unstable nuclei.
- 3. Extraction method of both p & n densities from proton elastic scattering data only.

AMD calculations of C isotopes taken from Yoshiko Kanada-En'yo and Hisashi Horiuchi, Progress of Theor. Phys. Suppl. No142, (2001)

4. ESPRI detectors

Recoil Proton Spectrometer (RPS)

$\theta_{lab} = 66^{\circ} - 80^{\circ}$, $Ep = 20-120$ MeV, $\Delta \Omega \sim 10$ msr/deg. $q = 1-2.2$ fm ⁻¹ , $\Delta Ex = 400-500$ keV		
Recoil drift chamber	436x436 mm ² (x-y-x'-y'-x'-y)	
Plastic scintillator	440x440 mm ² x 2 mm ^t	
NaI(Tl) caorimeter	431.8x45.72 mm ² x 50.8 mm ^t	

Kinematics of ESPRI

5. Experiments

5-1. Light unstable nuclei : ^{9,10,11,12,16}C

5-3. simultaneous extraction from two-energy p-elastic data of ⁹⁰Zr

中性子星核物質研究会

6. ESPRI at RIBF

Toward extraction of proton & neutron densities of unstable nuclei

- Suitable energy & high intensity
- ¹⁶C : the first ESPRI measurement with high-intensity RI beams at RIBF (NP0709-RIBF40) has been done in this April.
- 2. ¹³²Sn : flag-ship nuclei <u>as a next</u> <u>step from ²⁰⁸Pb (NP1112-RIBF79)</u>
 - ightarrow At 200 & 300 MeV/u
 - → n-skin thickness to constrain the symmetry energy of asymmetric nuclear matter EOS
 - → High-rate & high-Z tolerance of beam-line detector is required (up to ~1MHz & Z~50) MWDC, Solid Ar(Xe), etc. will be tested at HIMAC in 2014

Expected results of ¹³²Sn

- Test of simultaneous extraction of $\rho_p(\mathbf{r})$, $\rho_n(\mathbf{r})$ of ¹³²Sn from pseudodata of differential cross sections
- Using RIA and relativistic-Hartree calculations as nucleon density distributions.

	g.s. (input)	g.s. (extracted)	δr/r
r _n	4.916	4.907(23)	0.46%
r _p	4.650	4.612(49)	1.1%
Δr_{np}	0.266	0.295(54)	

7. Summary

- 1. ESPRI @ HIMAC, Chiba and GSI, Germany. \rightarrow Successfully done!
 - ✓ HIMAC-P179&P213 : ⁹C, ^{10,11}C, ²⁰O (FY2007-2009) [Y. Matsuda, et al., Phys. Rev. C87, 034614(2013)]
 - ✓ **GSI-S272** : ^{66,70}Ni (FY2009-2010)

 \rightarrow <u>1mm-t & 30mm- ϕ </u> *p*SHT [Y. Matsuda, et al.,NIMA643,6(2011)], energy resolution of ~ <u>500keV(σ)</u>

- \rightarrow still large experimental errors due to low statistics
- 2. Test of the <u>simultaneous extraction of $\rho_p(r) \& \rho_n(r)$ from proton elastic scattering data at 200, 300 MeV/u</u>
 - ✓ *two-energy* analysis method is now being developed with stable nuclei.
 - ✓ **RCNP-E366** : ^{90,92,94}Zr (FY2012)
 - **RCNP-E375** : ^{12,13,14}C (FY2013-2014)

 \rightarrow feasibility test experiment (E366) shows good results.

- 3. ESPRI @ RIBF with <u>high-intensity RI beam</u>
 - ✓ NP0709-RIBF40 : ¹⁶C at 300 MeV/u (light unstable nuclei; successfully done in April 2013!)
 - □ NP1112-RIBF79 : ¹³²Sn at 200&300 MeV/u (heavy unstable nuclei; approved by 2011 NP-PAC)
 - **D** Detectors are now being developed.
 - \Box Will be performed in 2015 (14 days).
- 4. Stable nuclei
 - \checkmark Neutron densities of Sn & Pb isotopes, neutron skin of ²⁰⁸Pb
 - □ Neutron skin of ⁴⁸Ca, ⁹⁰Zr
- 5. Future work?
 - HI+HI elastic scattering $\rightarrow \rho \sim 2\rho_0$: T. Furumoto, et. al, PrC85,044607(2012)

中性子星核物質研究会

Elastic Scattering of Protons with RI beams (ESPRI) project

Collaborators

S.Terashima (Beihang Univ.) Y.Matsuda (RCNP) H.Sakaguchi (RCNP) H.Otsu (RIKEN) T.Baba (Kyoto Univ.)

<u>RIKEN</u> H.Takeda K.Ozeki K.Yoneda

<u>Tohoku Univ.</u> T.Kobayashi <u>Kyoto Univ.</u> T.Kawabata T.Murakami M.Tsumura T.Furuno

<u>Miyazaki Univ.</u> Y.Maeda <u>RCNP</u>

I.Tanihata H.Jin Ong

<u>GSI</u> S272 collaborators

<u>NIRS</u> E.Takada M.Kanazawa

Thank you for your attention.