

計画研究A01「多重ストレンジネスのバリオン間相互作用」 研究紹介と報告 高橋俊行(KEK)

第2回ウィンタースクール・研究会

Outline

Introduction

Project of Group-A01

• (Previous studies on S=-2 system)

Motivation and status of each experiment

•E07 (Emulsion exp.)

•E42 (H search by HypTPC)

Information on S = -2 System, so far (1)

Information on S = -2 System, so far (2)

<u>E-Nucleus</u> Missing mass spectroscopy of ${}^{12}C(K^-,K^+){}^{12}_{\Xi}Be$

No clear peak was observed...,

Spectrum shape suggests attractive potential for Ξ .

 BNL AGS E885
 P.Khaustov et. al,

 U_{Ξ} =-14 MeV
 PRC61(2000)054603

 -20 < E < 0 MeV
 89 ± 14 nb/sr $\theta < 8^{\circ}$
 42 ± 5 nb/sr $\theta < 14^{\circ}$

<u>Twin Λ hypernuclei from Ξ^- capture</u>

A.Ichikawa et. al, Phys.Lett.B500(2001)37

 $\Xi^{-}+{}^{14}N-{}^{5}_{\Lambda}He+{}^{5}_{\Lambda}He+{}^{4}He+n$ $B_{\Xi}=-2.6\pm1.2 \text{ MeV}$

Motivation of J-PARC E07 (Emulsion Exp.)

Detection of double hypernuclei by new hybrid method

- 10 times' statistics of E373 ⇔ 10⁴ Ξ⁻ stop 10² double hypernuclei ~10 identified nuclides
- Nuclear (A) dependence of $\Lambda\Lambda$ binding energy
- H-dibaryon !?
- Ξ -N interaction via twin Λ hypernclei
- ⇒ needs to develop new emulsion analysis methods Umehara (Poster), J.Yoshida (Talk)
- X-rays from Ξ -atom (Ag/Br) tagged by the emulsion
 - $\Xi\text{-}\mathsf{Nucleus}$ potential in the surface region

 \Leftrightarrow Spectroscopy of Ξ -hypernuclei

Effects of J-PARC Hadron Accident

- Construction of K1.1BL and relocation of SKS to K1.1 from K1.8 (planned in 2013 summer) were postponed.
 - Beam time of E07 (at K1.8) will be delayed by 1.5-2 years
 - Detector setup 2013 autumn \rightarrow 2015 summer or later
 - Beam irradiation $2014.3 \rightarrow 2016.1$ or later
 - Run plan will be discussed in the next PAC (2015 May)
- User activities at J-PARC has been restricted.

K⁻ beam & B.S.

remove Q13 & install collimator ⇒ BL is shorten by 50cm

E13 commissioning at 20kW ESS1/ESS2 = \pm 250kV (max \pm 375kV)

KURAMA spectrometer

KURAMA magnet (from downstream)

gap: 50cm \rightarrow 80cm (x 1.25) to compensate the reduction of emulsion (2.6 t \rightarrow 2.1 t) Downstream drift chambers

DC2 (KL chamber) 1185 x 1185 mm² XX'YY' 9mm spacing

DC3 (AIDA chamber) 1900 x 1280 mm² XX'YY' 20 mm spacing

Test of AIDA chamber (1)

Ekawa (Kyoto)

Plateau curve by single wire measurement

-2.8kV is enough

Test of AIDA chamber (2)

Ekawa (Kyoto)

16 channels (1 card) readout using TDC (DAQ)

Forward Time Of Flight wall Assembly began

Hwang (JAEA)

Wrapping material dependence

 σ < 100ps with Aluminized mylar

Charge Hodoscope (CH) & Matrix/Mass Triggers to reduce trigger rates

- 48 segments
- WLS fiber + MPPC R.O.

Hwang (JAEA)

- 10.5mm spacing
- 458 x 400 mm² eff. area

SSD

Watabe(Nagoya), Kiuchi(JAEA), J.Lee, Tanida(Soeul)

Sensor (Hamamatsu)

- single-side 50µm pitch
- \bullet N-bulk with 320 μm thickness
- 90 x 90 mm²

Configuration

- XYXY stacks at up- and downstream of the emulsion
- 77x77 mm² eff. area
- 1536/1792 ch./layer R.O.
- APV front-end for DAQ

$\Delta X~{\sim}20 \mu m$, $\Delta X' {<}20 mrad$

good enough for guide of automatic tracking in the emulsion

Hyperball-X

Hosomi(JAEA), Tohoku-group

- 6 units of clover-type Ge detectors
- 1 unit has 4 crystals
- BGO for B.G. (π^0 & Compton) suppressor
- ~3% photo-peak efficiency at 350keV

Simulation

Emulsion

Nakazawa, Yoshida, Umehara, Kinbara, Mishina, Kyaw, ... (Gifu) Toho-Univ. group

- Emulsion gel of 2.1 t was purchased.
- The first 240kg was arrived on Dec.6 (Gifu-U)
- Emulsion plate making has just begun 10 days for 144 plates (34.5 x 35.0 cm²) will be finished by end of March

Produced emulsion plates are stored in the box of Lead blocks at Kamioka-Mine until beam irradiation (JFY2015) in order to avoid irradiation of cosmic-rays and Compton electrons.

Box making was done on Dec. 24.

Summary (E07)

- E07 aims to collect 10 times' statistics of double hypernucleus of the previous experiment
 - A-dependence of $\Lambda\Lambda$ binding energy
 - Ξ N interaction from twin hypernuclei / X-ray measurement from Ξ -atoms
- Schedule will be delayed by 1.5-2 years due to the Accident.
- However, construction of the detectors and emulsion is gradually underway.

Status of H-dibaryon Search Experiment at J-PARC (E42)

Hiroyuki Sako (JAEA) for J-PARC E42 Collaboration

Outline

- Introduction
- •TPC design
- R&D Status
- Summary

Search for H-dibaryon

Most stable and compact 6-quark state (uuddss)

Lattice-QCD calculations Binding energy: -13 ~ +7 MeV H may be slightly bound or unbound

Experimental search

• Peaks observed by KEK-E224, E522 around $\Lambda\Lambda$ mass threshold

- Indication of H?
- Statistics not enough

High statistics experiment at J-PARC

KEK-E224

J-PARC E42

Search for H-dibaryon in ¹²C(K⁻,K⁺)X at 1.6 GeV/c

GEMs

•4 GEMs (277x277mm²) •3-layer GEM (50µm+50µm+100µm)

completed in Mar 2013 **Electrode division**

- •12.5 mm width (20 div.) 1 sheet
- (6 div.) 3 sheets
- Suppress discharge rate

• Minimize acceptance reduction in 22 case an electrode is broken

Readout pads

No. of plane = 32 Pad size 2-2.5 x 10-12.5mm² Total no. of pad = 5768 Average charge sharing ~ 3 pads / hit Horizontal position resolution at B=1T< 300µm

Completed in Mar2013

NPA684(2001),595;NPA691(2001) 242c.

р

0.4

0.3

Test with UV laser with B-field (J-PARC, Apr 2013)

- YAG laser 266nm
- Energy 0-15mJ/pulse, 10Hz

Horizontal resolutions with B-field

Horizontal position resolutions improve by 40-50% from B=0 to 0.7 T

Development of TPC Electronics GET (General Electronics for TPC)

- Developed by Saclay, GANIL, IRFU, CENBG (France) MSU (USA)
- Optimized for TPC Variable gain/polarity, FADC frequency
- Adopted by Samurai-TPC, ACTAR TPC,ATTPC, MINOS

Fig. 1: Global view of the GET electronic.

Development of discharge protection board

Pad⇔AsAd mapping to optimize of DAQ speed

- Minimize the maximum multiplicity/AGET ~ 10
- \rightarrow AD conversion time ~ 250 µsec \rightarrow 1kHz (K⁻,K⁺) triggers

Summary (Hyp-TPC E42)

- We have been developing a TPC for J-PARC E42
 - High rate operation:
 - GEM and gating grid wires
 - Large H decay event acceptance:
 - A cylindrical target holder inside TPC drift volume
- Position resolutions improved by 40% at 0.7 T with a UV laser in a prototype TPC as expected

Schedules

Mar 2014-	Test of TPC2 (final TPC)
	GEM gain and stability against discharge
Jun 2014	Build field cage and target holder
Jul 2014-	Full system tests with GET electronics
Mar 2015	Goal completion
2014-2015	Construction of S.C. Helmholtz magnet

backup

研究組織

- 高橋俊(KEK、代表)、仲澤(岐阜)、佐藤(JAEA) 連携研究者
- 高橋仁(KEK)、成木(京都)、住浜(岐阜)
- 今井、佐甲、長谷川(JAEA)
- 谷田(ソウル/JAEA)
- 公募研究
- 谷田(ソウル/JAEA)、家入(KEK)

J-PARC E07 collaboration

K.Imai^a, K.Nakazawa^b, H.Tamura^c, S.Ahmad^d, J.K.Ahn^e, B.Bassalleck^f, R.E.Chrien^g, D.H.Davis^h, H.Ekawaⁱ, Y.Y.Fu^j, S.Fukunaga^k, Y.Han^f, R.Hasan^d, S.Hasegawa^a, E.Hayataⁱ, M.Hiroseⁱ, K.Hoshino^b, K.Hosomi^a, S.Hwang^a, M.Ieiri^l, K.Ito^m, K.Itonaga^b, T.Kawai^m, J.H.Kimⁿ, S.Kinbara^b, R.Kiuchi^o, T.Koike^c, H.S.Lee^e, J.Y.Lee^o, C.Li^j, Z.M.Li^j, A.Mishina^b, K.Miwa^c, H.Noumi^p, S.Ogawa^k, S.Y.Ryu^e, H.Sako^a, S.Sato^a, T.Sato^m, M.Sekimoto¹, H.Shibuya^k, K.Shirotori^p, M.K.Soe^q, H.Sugimura^a, M.Sumihama^b, H.Takahashi^l, T.Takahashi^l, K.Tanida^o, K.T.Tint^r, A.Tokiyasu^p, D.Tovee^h, M.Ukai^c, K.Umehara^b, T.Watabe^m, T.Yamamoto^c, N.Yasuda^s, C.S.Yoonⁿ, J.Yoshida^b, T.Yoshida^s, D.H.Zhang^t, J.Zhou^j, S.H.Zhou^j, and L.H.Zhu^j

^a Japan Atomic Energy Agency (JAEA), Japan, ^bPhysics Department, Gifu University, Japan, ^cDepartment of Physics, Tohoku University, Japan, ^dAligarh Muslim University, India, ^ePusan National University, Korea, ^fDepartment of Physics and Astronomy, University of NewMexico, USA, ⁸Brookhaven National Laboratory, USA, ^hUniversity Colledge of London, UK, Department of Physics, Kyoto University, Japan, ¹CIAE, China Institute of Atomic Energy (CIAE), China, *Department of Physics, Toho University, Japan, KEK, High Energy Accelerator Research Organization, Japan, "Department of Physics, Nagoya University, Japan, ⁿ Gyeongsang Nat'l University, Korea, ^oSeoul National University, Korea, ^pResearch Center for Nuclear Physics (RCNP), Japan, ⁹Mandalay University, Myanmar, 'Adanabon University, Myanmar, ^sUniversity of Fukui, Japan, ¹Shanxi Normal University, China.

PROPOSAL FOR 50 GEV PROTON SYNCHROTRON

Search for H-Dibaryon with a Large Acceptance Hyperon Spectrometer

J.K. Ahn (spokesperson), S.H. Hwang, S.H. Kim, S.J. Kim, S.Y. Kim, A. Ni, J.Y. Park, S.Y. Ryu Pusan National University, Korea

S. Hasegawa, R. Honda, Y. Ichikawa, K. Imai (co-spokesperson), H. Sako, S. Sato, K. Shirotori, H. Sugimura Japan Atomic Energy Agency (JAEA), Japan

> H. Fujioka, M. Niiyama Kyoto University, Japan

R. Kiuchi, K. Tanida Seoul National University, Korea

M. Ieiri, K. Ozawa, H. Takahashi, T. Takahashi High Energy Accelerator Research Organization (KEK), Japan

> K. Nakazawa, M. Sumihama Gifu University, Japan

B. Bassalleck University of New Mexico, USA