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mass formula 

•  well-known mass formula of stable nuclei 
–  Bethe-Weizacker mass formula 

–  due to the density saturation  

•  How about NSs ? 
–  structure of NS is determined as a result of balance of gravity & 

pressure gradient. 

–  in general, not so simple… 

•  we are successful to derive a mass formula of low-mass NS 
–  as functions of nuclear saturation parameter η & central density 

–  probably, independent of the EOS models 
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ρc 

P = 0 
TOV eqs. 

 

EOS 

you can get a NS model !! 
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Although simple
average mass of
w.d. companions
is 0.23 M⊙ larger,
weighted average is
0.04 M⊙ smaller

Champion et al. 2008

Demorest et al. 2010

Antoniadis et al. 2013

Romani et al. 2012

vanKerkwijk 2010

J. M. Lattimer Symmetry Energy and Neutron Star Structure

M=M⊙ 

Lattimer 2013 

0.87±0.07M⊙ (eccentric orbit) 
1.00±0.10M⊙ (circular orbit) 

Rawls+ (2011) 



observations of NSs 
•  candidates of low-mass NSs have been also discovered in 

binary system (Lattimer & Prakash 2011) 

•  radiation radius of X-ray source (Rutledge+ 2002) 
  e.g.) R∞ = 14.3±2.1km : CXOU 132619.7-472910.8 in omega Cen 

•  M & R from thermal spectra from quiescent low-mass X-
ray binaries (Guillot+ 2013; Lattimer & Steiner 2013) 
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Figure 15. Similar to Figure 9, corresponding to Run 7. Here, all possible assumptions have been relaxed in order to obtain a RNS measurement that is least affected
by systematic uncertainties. The NH parameters are left free; and Gaussian Bayesian priors and PL components are included. This results in an RNS measurement:
RNS = 9.1+1.3

−1.5 km.
(A color version of this figure is available in the online journal.)

[6 km, 20 km], and the MNS range is [0.3 M", 2.5 M"] com-
pared to [5 km, 30 km] and [0.5 M", 3.0 M"] with nsatmos.
This run (8) was done with the same characteristics as Run 1.

When comparing the posterior distributions of the parameters
and MNS–RNS contours obtained with nsagrav (Figure 16 for
Run 1 and Table 7) to those obtained with nsatmos (Figure 9
and Table 5), some consistencies can be noticed. However,
not all distributions are consistent between the two models.
Specifically, for M28, M13, and NGC 6304, one can notice
that an additional distinct lobe at high MNS appears in the
MNS–RNS parameter space. This appears to be because the
nsagrav model as implemented in XSPEC gives different values
in this parameter space than returned by nsatmos; the authors
of this model state that this is because the model is inapplicable
in this parameter region18 (V. E. Zavlin and G. G. Pavlov 2012,
private communication). For example, some sets of MNS–RNS
allowed by nsagrav and giving an acceptable χ2-value lead
to imaginary values of R∞. It is important for an observer to
keep this fact in mind, otherwise, results produced by the XSPEC

18 The MNS–RNS space where nsagrav is applicable can be seen here
http://heasarc.gsfc.nasa.gov/xanadu/xspec/models/m-r.pdf.

implementation of nsagrav could be misinterpreted. In light of
the pitfall mentioned here, the nsagrav model should be used
with care.

5. DISCUSSION

This paper presented the simultaneous analysis of the spectra
from five qLMXBs in GCs with a common RNS parameter
for all targets. The posterior distributions for RNS, MNS, R∞,
kTeff , and NH were obtained from MCMC simulations, which
included Gaussian Bayesian priors for the distances to the GCs
hosting the targets. In this discussion section, the original work
performed here and the data used are summarized. This is
followed by a subsection discussing various possible biases
resulting from the MCMC analysis. The discussion finishes with
the implication that the resulting RNS measurement may have
for the determination of the dEoS.

5.1. List of New Analysis Methods, Data and Results

The following two paragraphs aim at summarizing the novel
approach to the analysis of the NS thermal spectra, and unused
data presented in this paper. The MCMC framework for spectral
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low-mass NS models 

•  low-mass NSs 
–  low-central density 
–  importance of EOS for low-density region 

–  may be able to discuss the stellar models without the core EOS 

•  EOS of nuclear matter for ρ≲ρ0 (normal nuclear density) 
would be determined with reasonable accuracy by 
terrestrial nuclear experiments. 

•  For ρ≲ 2ρ0, one can almost neglect an uncertainty of 
three nucleon interaction (Gandolfi+ 2012) and contribution 
from hyperon (or quark etc...). 

          we focus on the NS models for ρ≲ 2ρ0  
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three-nucleon interactions 

•  for ρ ≲ 2ρ0, the uncertainty from three-nucleon 
interactions in EOS is not so relevant.   
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RAPID COMMUNICATIONS

MAXIMUM MASS AND RADIUS OF NEUTRON STARS, AND . . . PHYSICAL REVIEW C 85, 032801(R) (2012)
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FIG. 1. (Color online) The energy per particle of neutron matter
for different values of the nuclear symmetry energy (Esym). For
each value of Esym the corresponding band shows the effect of
different spatial and spin structures of the three-neutron interaction.
The inset shows the linear correlation between Esym and its density
derivative L.

[26] we obtain an empirical constraint for neutron matter
energy Eneutron(ρ0) = 16 ± 2 MeV. Potential higher-order cor-
rections to the quadratic nuclear symmetry energy, for which
there is some theoretical motivation but no clear experimental
evidence, may affect the extraction of the neutron matter
energy and increase the associated error. In this work we ignore
these poorly known corrections and tune AR to reproduce the
neutron matter energy in the range 16 ± 2 MeV. Our results
are shown in Fig. 1, where the green and blue points are
QMC results for different choices of AR corresponding to
Eneutron(ρ0) = 16 MeV(Esym = 32 MeV) and Eneutron(ρ0) =
17.7 MeV(Esym = 33.7 MeV), respectively. The results are
compared to those obtained using a 2n force without 3n
(Esym = 30.5 MeV) and 2n combined with the Urbana IX
3n (Esym = 35.1 MeV). The bands depict the sensitivity to
short-distance spin and spatial structure of the 3n interaction
and are obtained by varying the range of the 3n short-distance
force and A3π .

In the vicinity of nuclear density, Eneutron(ρ) =
Eneutron(ρ0) + L/3(ρ − ρ0)/ρ0, where L is related to the
derivative of the nuclear symmetry energy. The inset in Fig. 1
shows the correlation between Esym and L. This correlation is
insensitive to the large variations in the range of the short-range
3n force µ and the strength of the 3π term A3π . This is in sharp
contrast to the predictions of mean-field theories where the
slope was found to be very sensitive to the choice of effective
interactions [27]. Previous calculations of neutron matter up
to ρ0 [28] use a chiral 2n interaction fit to laboratory energies
of 350 MeV plus the two-pion exchange three-nucleon inter-
action to calculate the neutron matter equation of state using
perturbation theory. In contrast to our results, a significant
repulsion from the 2π exchange long-range 3n interaction
was found. Since this force is better constrained by light
nuclei, these earlier calculations can make a prediction for the
neutron matter energy independent of the phenomenological
short-range interaction, which plays an important role in

TABLE I. Fitting parameters for the neutron matter EoS defined
in Eq. (3) for selected different Hamiltonians.

3N force Esym L a α b β

(MeV) (MeV) (MeV) (MeV)

none 30.5 31.3 12.7 0.49 1.78 2.26
V PW

2π + V R
µ=150 32.1 40.8 12.7 0.48 3.45 2.12

V PW
2π + V R

µ=300 32.0 40.6 12.8 0.488 3.19 2.20
V3π + VR 32.0 44.0 13.0 0.49 3.21 2.47
V PW

2π + V R
µ=150 33.7 51.5 12.6 0.475 5.16 2.12

V3π + VR 33.8 56.2 13.0 0.50 4.71 2.49
UIX 35.1 63.6 13.4 0.514 5.62 2.436

our calculation. To understand this basic difference, further
tests of the convergence of perturbation theory and the chiral
expansion in the diagrammatic calculations, a survey of other
two-body interactions in the AFDMC, and the incorporation of
chiral interactions in nonperturbative methods such as lattice
and suitable extension of QMC would be necessary.

Current determinations of L have relied on analysis of
neutron skins, surface contributions to the symmetry energy of
neutron-rich nuclei, and isospin diffusion in heavy-ion reac-
tions. These studies have been useful but not very constraining
as acceptable values are in the range L = 40–100 MeV [25].
However, a better determination of L even with modest
reduction in the error would test our model for 2n and 3n
interactions.

The predictions of QMC can be accurately fit using

E(ρ) = a

(
ρ

ρ0

)α

+ b

(
ρ

ρ0

)β

, (3)

where the coefficients a and α are sensitive to the low-density
behavior of the EoS, while b and β are sensitive to the
high-density physics [29]. We find that the 3n force plays
a key role in determining the coefficient b and the variation of
the other EoS parameters is comparatively small. Numerical
values for these parameters are reported in Table I for selected
Hamiltonians.

To calculate the mass and radius of neutron stars we solve
the Tolman-Oppenheimer-Volkoff (TOV) equations for the
hydrostatic structure of a spherical nonrotating star using
the QMC equation of state for neutron matter [30,31]. The
QMC EoS we use is for ρ ! ρcrust = 0.08 fm−3. Below this
density we use the EoS of the crust obtained in earlier works
in Refs. [32,33].

The neutron star mass-radius predictions are obtained by
varying the 3n force and are shown in Fig. 2. The striking
feature is the estimated error in the neutron star radius with a
canonical mass of 1.4Msolar. The uncertainty in the measured
symmetry energy of ±2 MeV leads to an uncertainty of about
3 km for the radius, while the uncertainties in the short-distance
structure of the 3n force predicts a radius uncertainty of "1 km.
The different bands of Fig. 2 correspond to the EoS of Fig. 1
with the same colors, giving different values of Esym.

The central density of stars with M # 1.5Msolar are larger
than 3ρ0. At these higher densities, effects such as relativistic
corrections to the kinetic energy, retardation in the potential,

032801-3

2n0 

n0 

Gandolfi+ 2012	




EOS near the saturation point 
•  Bulk energy per nucleon near the saturation point of 

symmetric nuclear matter at zero temperature; 
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unified EOS modes 
•  unified-EOS models 

–  describing both the crustal and core regions of NS 
–  based on the EOSs of nuclear matter with specific values of K0 & L 

–  consistent with empirical data of masses and radii of stable nuclei 

•  we especially focus on 
–  phenomenological EOS with various K0 & L  

(Oyamatsu & Iida 2003; 2007) 

–  EOSs based on relativistic mean field models 

•  Shen EOS (Shen+ 1998)  
•  Miyatsu EOS (Miyatsu+ 2013) 

–  Skyrme-type effective interaction 

•  FPS (Pethick+ 1995), 
•  SLy4 (Douchin & Haensel 2001) 
•  BSk19, BSk20, BSk21 (Potekhin+ 2013) 
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MR relations 
•  NS models are constructed with various sets of K0 & L 

•  We can find the specific combination of K0 & L describing 
the low-mass NSs, 
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vanishes. It is not clear up to what density the adopted unified-EOSs are applicable. Nonetheless,

one can expect that the uncertainty from three-neutron interactions in the EOS of pure neutron

matter becomes relevant for ρ ! 2ρ0, as suggested by quantum Monte Carlo calculations28. We

thus examine the stellar models for ρc ≤ 2ρ0.

Fig. 1(a) shows the resultant M -R relation. To systematically describe various stellar models,

we introduce a new auxiliary parameter η defined as

η = (K0L
2)1/3. (1)

Remarkably, the M -R relation changes almost smoothly with η. In fact, we carefully chose the

powers of the parameters K0 and L in finding η. Note that we do not adopt the OI-EOS with

L " 10 MeV14, 15, because the pressure can become negative inside the star, which may tell us the

lower limit of η as η ! 30 MeV. Meanwhile, the upper limit sets that η " 200 MeV (Extended

Data Table 1) to examine in the wide-range parameter space, which is significantly higher than the

usual expectations in the nuclear physics7.

From the observational viewpoint, the radiation radius R∞ = R/
√

1 − 2GM/Rc2 and the

gravitational redshift z = 1/
√

1 − 2GM/Rc2 − 1 may be more relevant in describing the stellar

properties, which relation can be written as in Fig. 1(b). Actually, the detected photon flux is

proportional to (R∞/D)2, where D is the distance from the Earth. The gravitational redshift is

associated with the shift of atomic absorption lines emitted from stellar surface.

The smooth change of the stellar properties with η suggests that not only future terrestrial

4

Table 1: EOS parameters. K0 is incompressibility, L is the density dependence of the nu-

clear symmetry energy, and η is a new nuclear matter parameter defined as η = (K0L2)1/3.

EOS K0 (MeV) L (MeV) η (MeV)

OI-EOS 180 31.0 55.7

180 52.2 78.9

230 42.6 74.7

230 73.4 107.4

280 54.9 94.5

280 97.5 138.6

360 76.4 128.1

360 146.1 197.3

Shen 281 114 154.0

Miyatsu 274 77.1 117.7

FPS 261 34.9 68.2

SLy4 230 45.9 78.5

BSk19 237 31.9 62.3

BSk20 241 37.4 69.6

BSk21 246 46.6 81.1

15

ρc < 2ρ0 



mass formula 

Dec./27/2013 「中性子星核物質」研究会 @理研 9 

!" #"" #!" $"""

"%&

#%$

#%'

!()*+,-

!
.!

!
/0(#'"
/0($1"
/0($'"
/0(1&"
23+4
*56789:
;<2
2=6>
?2@#A
?2@$"
?2@$#

"B(C(#%!""

"B(C($%"""

"B(C(#%"""

!" #"" #!" $"""

"%">

"%"'

"%#$

"%#&

"%$"

"%$>

!()*+,-

"

/0(#'"
/0($1"
/0($'"
/0(1&"
23+4
*56789:
;<2
2=6>
?2@#A
?2@$"
?2@$#

"B(C(#%!""

"B(C($%"""

"B(C(#%"""

D7E

DFE

Figure 2: Neutron star masses in (a) and the gravitational redshifts of neutron star in (b) as a function of η. The

stellar models with the various unifrid-EOSs are constructed for ρc = 2.0ρ0, 1.5ρ0, and 1.0ρ0. The solid, broken, and

dotted lines are the linear fitting to the cases of ρc = 2.0ρ0, 1.5ρ0, and 1.0ρ0 (see text for details).
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neutron star models.

14

nuclear experiments but also simultaneous measurements of stellar properties, such as M and R,

could constrain η, which could in turn lead to restriction of stellar models. In particular, observa-

tions of low-mass neutron stars would be essential. For example, the radiation radius of the X-ray

source, CXOU 132619.7–472910.8, in the globular cluster NGC 5139 (ω Cen) has been deter-

mined as R∞ = 14.3 ± 2.1 km from the Chandra data29. The allowed region from this radiation

radius is shown in Fig. 1(a) and (b) with the shaded region. This is consistent with various values

of η, but future precise determination of R∞ could constrain η, if M is low enough. Additionally,

thermal spectra detected from quiescent low-mass X-ray binaries are expected to give M and R

simultaneously5, 6, which could tell us a stringent constraint on η.

To examine the dependence of the stellar properties on η more clearly, we plot the stellar

masses for ρc = 2.0ρ0, 1.5ρ0, and 1.0ρ0 in Fig. 2(a). From this figure, we find that the stellar

masses with the fixed central density can be approximately expressed as a linear function of η,

M

M"
= c0 + c1

( η

100 MeV

)
, (2)

where c0 and c1 are constants depending on ρc. The validity of η is now evident. The deviation

from this formula for ρc = 2ρ0 is larger than that for ρc = ρ0, which could be due to the effect of

three-nucleon interaction. Moreover, we find that the coefficients in equation (2) can be expressed

well with the quadratic curve as a function of uc ≡ ρc/ρ0 within the accuracy less than a few

percent as in Fig. 3. Finally, we can derive the mass formula of low-mass neutron stars;

M

M"
= 0.371 − 0.820uc + 0.279u2

c − (0.593 − 1.254uc + 0.235u2
c)

( η

100 MeV

)
, (3)

where we consider the stellar models for ρc ! 0.9ρ0, because the stellar models for ρc " 0.9ρc can

5



•  via the simultaneous observations of M & z (or R or R∞), one 
could extract the values of η& ρc !! 
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nuclear experiments but also simultaneous measurements of stellar properties, such as M and R,

could constrain η, which could in turn lead to restriction of stellar models. In particular, observa-

tions of low-mass neutron stars would be essential. For example, the radiation radius of the X-ray

source, CXOU 132619.7–472910.8, in the globular cluster NGC 5139 (ω Cen) has been deter-

mined as R∞ = 14.3 ± 2.1 km from the Chandra data29. The allowed region from this radiation

radius is shown in Fig. 1(a) and (b) with the shaded region. This is consistent with various values

of η, but future precise determination of R∞ could constrain η, if M is low enough. Additionally,

thermal spectra detected from quiescent low-mass X-ray binaries are expected to give M and R

simultaneously5, 6, which could tell us a stringent constraint on η.

To examine the dependence of the stellar properties on η more clearly, we plot the stellar

masses for ρc = 2.0ρ0, 1.5ρ0, and 1.0ρ0 in Fig. 2(a). From this figure, we find that the stellar

masses with the fixed central density can be approximately expressed as a linear function of η,

M

M"
= c0 + c1

( η

100 MeV

)
, (2)

where c0 and c1 are constants depending on ρc. The validity of η is now evident. The deviation

from this formula for ρc = 2ρ0 is larger than that for ρc = ρ0, which could be due to the effect of

three-nucleon interaction. Moreover, we find that the coefficients in equation (2) can be expressed

well with the quadratic curve as a function of uc ≡ ρc/ρ0 within the accuracy less than a few

percent as in Fig. 3. Finally, we can derive the mass formula of low-mass neutron stars;

M

M"
= 0.371 − 0.820uc + 0.279u2

c − (0.593 − 1.254uc + 0.235u2
c)

( η

100 MeV

)
, (3)

where we consider the stellar models for ρc ! 0.9ρ0, because the stellar models for ρc " 0.9ρc can
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Figure 2: Neutron star masses in (a) and the gravitational redshifts of neutron star in (b) as a function of η. The

stellar models with the various unifrid-EOSs are constructed for ρc = 2.0ρ0, 1.5ρ0, and 1.0ρ0. The solid, broken, and

dotted lines are the linear fitting to the cases of ρc = 2.0ρ0, 1.5ρ0, and 1.0ρ0 (see text for details).
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Figure 3: The correspondence between the coefficients obtained in Eq. (2) and the quadratic fitting curve as a

function of ρc/ρ0. In the figure, the marks denote the coefficients obtained in Eq. (2), while the solid and broken lines

correspond to the fitting curve for c0 and c1. We consider the stellar models only for ρc ! 0.9ρ0 to avoid the unstable

neutron star models.
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become unstable, depending on EOSs.

We also find that the gravitational redshift with the fixed central density can be approximately

expressed as a linear function of η, as in Fig. 2(b). Then, in the same way to derive equation (3),

we can derive the theoretical formula of gravitational redshift

z = 0.00859 − 0.0619uc + 0.0255u2
c − (0.0429 − 0.108uc + 0.0120u2

c)
( η

100 MeV

)
. (4)

Via the simultaneous observations of mass and gravitational redshift could tell us the nuclear matter

parameter η and ρc, using equations (3) and (4).

Futhermore, we plot the stellar radii for ρc = 1.5ρ0 and 2.0ρ0 in Fig. 4. From this figure,

one can observe that the stellar radii strongly depend on the central density for η ! 90 MeV, while

converging to an almost linear function of η for η " 90 MeV expressed as

R [km] = 10.32 + 2.57
( η

100 MeV

)
. (5)

Note that this converging behavior holds for ρc = 1.5ρ0 ∼ 2ρ0. Again, one could find not only η

but also ρc with the mass and radius formulae derived here, via the direct observations of masses

and radii of low-mass neutron stars.

In summary, we have been first successful to derive the theoretical formulae of mass, radius,

and gravitational redshift for low-mass neutron stars, as functions of the stellar central density and

a new nuclear matter parameter η we found here. Via the direct observations of low-mass neutron

stars, such as the low-mass X-ray binaries, one can extract not only the nuclear matter parameter

but also the stellar central density, which enables us to unlock the neutron star physics.

6

nuclear experiments but also simultaneous measurements of stellar properties, such as M and R,

could constrain η, which could in turn lead to restriction of stellar models. In particular, observa-

tions of low-mass neutron stars would be essential. For example, the radiation radius of the X-ray

source, CXOU 132619.7–472910.8, in the globular cluster NGC 5139 (ω Cen) has been deter-

mined as R∞ = 14.3 ± 2.1 km from the Chandra data29. The allowed region from this radiation

radius is shown in Fig. 1(a) and (b) with the shaded region. This is consistent with various values

of η, but future precise determination of R∞ could constrain η, if M is low enough. Additionally,

thermal spectra detected from quiescent low-mass X-ray binaries are expected to give M and R

simultaneously5, 6, which could tell us a stringent constraint on η.

To examine the dependence of the stellar properties on η more clearly, we plot the stellar

masses for ρc = 2.0ρ0, 1.5ρ0, and 1.0ρ0 in Fig. 2(a). From this figure, we find that the stellar

masses with the fixed central density can be approximately expressed as a linear function of η,

M

M"
= c0 + c1

( η

100 MeV

)
, (2)

where c0 and c1 are constants depending on ρc. The validity of η is now evident. The deviation

from this formula for ρc = 2ρ0 is larger than that for ρc = ρ0, which could be due to the effect of

three-nucleon interaction. Moreover, we find that the coefficients in equation (2) can be expressed

well with the quadratic curve as a function of uc ≡ ρc/ρ0 within the accuracy less than a few

percent as in Fig. 3. Finally, we can derive the mass formula of low-mass neutron stars;

M

M"
= 0.371 − 0.820uc + 0.279u2

c − (0.593 − 1.254uc + 0.235u2
c)

( η

100 MeV

)
, (3)

where we consider the stellar models for ρc ! 0.9ρ0, because the stellar models for ρc " 0.9ρc can

5

vanishes. It is not clear up to what density the adopted unified-EOSs are applicable. Nonetheless,

one can expect that the uncertainty from three-neutron interactions in the EOS of pure neutron

matter becomes relevant for ρ ! 2ρ0, as suggested by quantum Monte Carlo calculations28. We

thus examine the stellar models for ρc ≤ 2ρ0.

Fig. 1(a) shows the resultant M -R relation. To systematically describe various stellar models,

we introduce a new auxiliary parameter η defined as

η = (K0L
2)1/3. (1)

Remarkably, the M -R relation changes almost smoothly with η. In fact, we carefully chose the

powers of the parameters K0 and L in finding η. Note that we do not adopt the OI-EOS with

L " 10 MeV14, 15, because the pressure can become negative inside the star, which may tell us the

lower limit of η as η ! 30 MeV. Meanwhile, the upper limit sets that η " 200 MeV (Extended

Data Table 1) to examine in the wide-range parameter space, which is significantly higher than the

usual expectations in the nuclear physics7.

From the observational viewpoint, the radiation radius R∞ = R/
√

1 − 2GM/Rc2 and the

gravitational redshift z = 1/
√

1 − 2GM/Rc2 − 1 may be more relevant in describing the stellar

properties, which relation can be written as in Fig. 1(b). Actually, the detected photon flux is

proportional to (R∞/D)2, where D is the distance from the Earth. The gravitational redshift is

associated with the shift of atomic absorption lines emitted from stellar surface.

The smooth change of the stellar properties with η suggests that not only future terrestrial

4



radii of low-mass NSs 

•  with using the formulas of mass and gravitational redshift, 
one can also predict the radius of NS.  
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Fig. 4.— Neutron star radii as a function of η. The stellar models constructed from various

unified EOSs are given for ρc = 1.0ρ0 (black), 1.5ρ0 (red), and 2.0ρ0 (blue). The solid,

broken and dotted lines are the the formula values for the cases of ρc = 2.0ρ0, 1.5ρ0, and

1.0ρ0, respectively, obtained from equations (2) and (3). The thick straight line denotes the

converging behavior expressed by equation (4).



summary 

•  M & R of low-mass NSs are becoming to determine 
observationally. 
–  strongly associated with the EOS for low-density region 

•  we focus on the NS models with ρ≲ 2ρ0, adopting the 
unified EOS models. 

•  we are successful to derive the formulas of mass and 
gravitational redshift for low-mass NS, as functions of NS 
central density and a new nuclear matter parameter. 
–  also predict the stellar radius 
–  this is direct connection between the nuclear physics & astrophysics. 
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