Detector R&D for Nuclear Physics at RAON

Young Jin Kim

Rare Isotope Science Project (RISP) Institute for Basic Science (IBS) RIKEN-KOREA PHENIX Workshop SKKU November 05, 2013

RISP and RAON

•RISP = \underline{R} are \underline{I} sotope \underline{S} cience \underline{P} roject

●Plan & build Rare Isotope accelerator and experimental facilities in Korea ●RAON (라온) = Name of Rare Isotope accelerator complex

Pure Korean word: meaning "delightful", "joyful", "happy"

•Brief History

-International Science-Business Belt (ISBB) plan (Jan. 2009)

-Preliminary Design Report (Mar. 2009 - Feb. 2010)

-Conceptual Design Report (Mar. 2010 - Feb. 2011)

-International Advisory Committee (Jul. 2011)

-Institute for Basic Science (IBS) established (Nov. 2011)

-Rare Isotope Science Project (RISP) launched (Dec. 2011)

 \checkmark Rare Isotope accelerator complex is the representative facility of IBS

-1st Technical Advisory Committee (May 2012)

-Baseline Design Summary (Jun. 2012)

-1st International Advisory Committee (Jul. 2012)

-2nd Technical Advisory Committee (May 2013)

-2nd International Advisory Committee (Jul. 2013)

-1st Program Advisory Committee (Oct. 2013)

-Technical Design Report (Present: Dec. 2013)

Why Rare Isotope Beam?

RAON Layout

Institute for Basic Science

Rare Isoto

Science Pr

LEBT ECR-IS (10keV/u, 12 pμA)

	RFQ (300keV/u, 9.5 pμA)	Accelerator	Drive	r Linac	Post Acc.	Cyclotron
	MEBT	Particle	proton	U ⁺⁷⁸	RI beam	proton
ſ		Beam energy	600 MeV	200 MeV/u	18.5 MeV/u	70 MeV
	SCL1 (18.5MeV/u, 9.5 pµA)	Beam current	660 µA	8.3 pµA	-	1 mA
		Power on target	400 kW	400 kW	-	70 kW
		ISO	L			

Science and Applications with Rare Isotopes

- Exotic nuclei near the neutron drip line
- Superheavy Elements (SHE)
- Equation-of-state (EoS) of nuclear matter
- Nuclear structure

Material science

 β -NMR / μ SR

Institute for Basic Science

 \triangleright

Nuclear Astrophysics

- Origin of nuclei
- Paths of nucleosynthesis
- Neutron stars and supernovae

Experimental Facilities

Institute for Basic Science

KOrea Broad Acceptance Recoil Spectrometer and

Rare Isotor

Main facility for nuclear structure and nuclear astrophysics studies with low-energy stable and rare isotope beams

nstitute for Basic Science

Main Features of KOBRA

Associate Equipment in KOBRA

• Beam tracking detectors at F1~F5

Institute for Basic Science

Associate Equipment – detector

Gamma-array

- 4-fold 32 segmented Clover HPGe X 16
- 3/8 array (6 clovers) : ~ 2015
- Half of full array : ~ 2018
- Last half of full array : 2019 \sim
- International collaboration is under discussion

Si-array

- barrel-type (# of position sensitive Si detectors = 27)
- Azimuthal angular coverage : 60%
- Δ E-E telescope : 60 μ m + 1500 mm

Beam tracking detectors

- PPAC (Parallel Plate Avalanche Counter) : 100X100 mm², > 10⁶ pps
- MCP (Multi-Channel Plate) : 70X70 mm², 0.3 mm (FWHM) of position resolution
- Diamond detector for the future

Focal plane detector

- Ion chamber + ΔE -E detector
- Effective length ~ 30 cm

Heavy-Ion Collision Experiment

Study of Nuclear Matter

1.Exploring the phase diagram of strongly interacting matter

-Phase transitions (liquid \leftrightarrow gas, hadron \leftrightarrow QGP)

2.Determining Equation of State (EOS) of the strongly interacting medium below and above the saturation density up to $\rho \sim 2\rho_0$

-Isospin dependence

3. Modification of hadronic properties in dense medium

4.Importance for astrophysics

- -Supernovae and neutron stars
- -Nuclear synthesis and

Physics Observables for Heavy-Ion Collision

Experiment at RAON

Important to measure system size (Ca, Ni, Ru, Zr, Sn, Xe, Au, U), energy (lowest to top energies), centrality, rapidity & transverse momentum dependence

1.Pygmy and Giant dipole resonances

- •Energy spectra of gammas
- •Related to the radius of n-skin for unstable nuclei

2.Particle spectrum, yield, and ratio

•n/p, ${}^{3}H(pnn)/{}^{3}He(ppn)$, ${}^{7}Li(3p4n)/{}^{7}Be(4p3n)$, $\pi^{-}(d\bar{u})/\pi^{+}(u\bar{d})$, etc.

3.Collective flow

- • $v_1 \& v_2$ of n, p, and heavier clusters
- •Azimuthal angle dependence of n/p ratio w.r.t the reaction plane

4. Various isospin dependent phenomena

- •Isospin fractionation and isoscaling in nuclear multi fragmentation
- •Isospin diffusion (transport)

Experimental Setup

•We need to accommodate

Large acceptance

•Precise measurement of momentum (or energy) for variety of particle species, including $\pi^{+/-}$ and neutrons, with high efficiency

- Gamma detection for Pygmy and Giant dipole resonances
- Keep flexibility for other physics topic

<u>Large Acceptance Multi-Purpose Spectrometer (LAMPS)</u>

•Two setups

- •Low-energy (E < 18.5A MeV) setup for the day-1 experiment
- •High-energy (E > 18.5A MeV) setup

•Beam

State beam: p, ¹²C, ⁴⁰Ca, ⁵⁸Ni, ⁹⁶Ru, ⁹⁶Zr, ¹¹²Sn, ¹³²Xe, ¹⁵⁸Au, ²³⁸U, and more up to 200*A* MeV
RI beam: Ca, Ni, Ru, Zr, Sn, Xe, and more up to 250*A* MeV
*for commissioning
*when it is available
*if it is possible

Low Energy LAMPS Experimental Setup

E_{beam} < 18.5*A* MeV For GDR Experiments (to test PDR measurements as well)

Low Energy LAMPS Experimental Setup

기소**과약언구원** Institute for Basic Science

Cooperate with KOBRA

To use RI beam from F2 In-Flight at KOBRA & from ISOL

Charged Particle Measurements

- Reactions:
 - Central and peripheral collisions ^{50,54}Ca + ⁴⁰Ca ^{68,70,72}Ni + ⁵⁸Ni ^{106,112,124,130,132}Sn + ^{112,118,124}Sn

GDR(PDR) Measurements

- Reactions:

Photoabsorption collisions 106,112,124,130,132Sn + ¹⁹⁷Au/²⁰⁸Pb 68,70,72Ni + ¹⁹⁷Au/²⁰⁸Pb ^{50,54}Ca + ¹⁹⁷Au/²⁰⁸Pb

- Detectors:

 γ -array at F3 Spectrometer for beam fragments ($\Delta p/p$ better than 1/1000) Neutron detector array at 0°

- Measurement:

Excitation energy E* from kinematically complete measurement of all outgoing particles

F5

F3

Si-CsI Detector R&D

Neutron Detector

Nuclear

Physics Laborato

Module map

Single modules

Institute for Basic Science

R&D with Korea Univ. CFD & VTD electronics setups ⁶⁰Co & ²⁵²Cf source tests •Bicron BC-408 & Rexon RP-408 ⇒Better results with BC-408 •Tail-like fish & square frustum light guides ⇒Minimum measurable neutron energy is lower for square frustum light guide (~ 1.5 Me ⇒Beam test confirmed -Checking multi-hit performance by clusterization using at least 7 single modules is in preparation

High Energy LAMPS Experimental Setup

High Energy LAMPS Experimental Setup

Solenoid Magnet

Solenoid design

Institute for Basic Science

with homogeneous B-field Boperation: ~ 0.5 T Bmax.: ~ 1T ΔB/B < 2 %

Total size: 2.6 x 2.6 m²

•To cover TPC

•Cylindrical shape

(r = 0.5 m, l = 1.2 m)

Deviation of magnetic field

			Solenoid
$-75 \sim 75 \ \mathrm{cm}$	Solenoid Coil	Solenoid	with Return Yoke
		with Return Yoke	& Bump Coil
$\Delta B_{mod} \ (\mathrm{R} = 0 \ \mathrm{cm})$	0.107 T	0.062 T	0.006 T
$\Delta B_{mod} \ (R = 50 \ cm)$	0.103 T	0.070 T	0.008 T
$\Delta B_z \ (\mathrm{R} = 50 \ \mathrm{cm})$	0.110 T	0.072 T	0.008 T
$\Delta B_r \ (\mathrm{R} = 50 \ \mathrm{cm})$	$\pm 0.076~{\rm T}$	$\pm 0.043~{\rm T}$	$\pm 0.008~{\rm T}$

Solenoid magnet design is completed (Need to figure out production feasibility)
 Communicate with domestic and foreign magnet companies

CAON

Time Projection Chamber (TPC)

Time Projection Chamber (TPC)

R&D with Pusan Natl. Univ., Korea Univ., and Inha Univ.

- -1 x 1.2 m² cylindrical shape
- -GEM based & pad readout in end-caps
- (~100 k readout channels)
- -Large acceptance ($\sim 3\pi$ sr)
- -Complete 3D charged particle tracking ⇒Particle identification and momentum reconstruction
- -Completed Garfield++ & GEANT-4 simulation
- -Developing tracking algorithm
- -1st Prototype test result is being analyzed
- -Prepare to build 2nd Prototype

1st TPC Prototype Active volume: 10 x 10 x 20 cm3 GEM based 635 readout channels Analysis of test data is in progress

CAON

1st TPC Prototype Test

divider

Viniter In

frem.

Laser direction HV

Lingle-ba

2nd TPC Prototype

Science Proj

TPC Simulation

Figure 3.62 TPC hit information before digitization with P10 gas and single GEM.

Au + Au @ 250A MeV Isospin Quantum Molecular Dynamics Events 2.5 mm pad ~ 300 K readout channels 5 mm pad ~ 100 K readout channels

Figure 3.68 TPC hit information after digitization with Ar $90\% + CO_2 \ 10\%$ gas and triple GEM. Left plot is with 2.5 mm hexagonal readout pads and right plot is with 5 mm hexagonal readout pads, respectively.

TPC Acceptance

Rare Isotope Science Project

Si-CsI Detector

Institute for Basic Science

350 msr e	size (mm^2)	
inner ring	front	66.80×26.20
$(14^{\circ} - 19^{\circ})$	rear	86.92×37.84
outer ring	front	62.09×20.08
$(19^{\circ} - 24^{\circ})$	rear	89.17×28.84

CAON

Rare Isotop

Science Proj

Si-CsI module Si: 2 x 8 pad readouts CsI: 4 x 4 APD readouts

Dipole Spectrometer

Multi particle tracking capability of isotopes for p, He, and heavier fragments

- •Rotatable, $\Delta p = \pm 20\%$, acceptance ≥ 50 msr, Focal plane < 1 m
- •Optics calculation is on going to reduce the length of focal plane
- •Focal Plane detector

*****MWDC + Plastic scintillator ToF($\sigma_t < 100$ ps, essential for $\Delta p/p < 10^{-3}$ @ $\beta = 0.5$)

Neutron Detector Array

Rare Isotor

Science Pr

Zero Degree Spectrometer (ZDS)

Spectroscopy of RI-bean at Zero Degree

In-beam γ spectroscopy
Coulomb excitation
Nucleon knock out
Breakup reaction
Missing mass spectroscopy
Inverse kinematics

Nuclear Structure Mass Half-life Excited states Deformation & more

ZDS Conceptual Layout

Exotic

RI beam

Design Goals

Momentum resolution	Δ
Magnetic rigidity	
Angular acceptance (vertical)	
Angular acceptance (horizontal)	
Momentum acceptance	

 $\Delta p/p = 1200-4000$ ~9 Tm ± (20-50) mrad ± ~30 mrad ± ~3%

R&D Plan, Production Plan

•Solenoid magnet design is completed

- -Need to figure out production feasibility
- -Communicate with domestic and foreign magnet companies
- •Si-CsI detector & neutron detector are commonly used at both experimental setups -Electronics also can be common

•TPC detector and electronics are quit complicated

-Need longer R&D time than other detectors

R&D and production of most of detectors will be done with domestic people
Adapt advanced electronics & DAQ system from foreign research institute and modify

•For future upgrade

Longer optics calculation for better dipole spectrometer performance -After optics calculation completed, magnet design will be started & focal plane detector design will be fixed

➡Build Si-CsI detector at high energy experimental setup

Thank for your attention!

16S 기초과학연구원 Institute for Basic Science

Pygmy and Giant Dipole Resonances

(a) GDR

10

8 6

6 8

dP/dE_(MeV)

Giant dipole resonance:

⁷⁸Ni

⁷⁶Ni

⁷⁴Ni

⁷²Ni

⁷⁰Ni

⁶⁸Ni

⁶⁶Ni ⁶⁴Ni

oscillation between non-deformed, incompressible proton and neutron spheres

(**Nev**) 12.3 12.2 12.1 12.0

 $S\gamma^{c}$ (arb. units)

(**N**) 3.25 3.20 3.15 ↓ 3.10

3.10

60 62 64 66 68 70 72 74 76 78 80

12.0

10

9

(b) PDR

Pygmy dipole resonance: neutrons at the nuclear surface (neutron skin) oscillating against the isospin neutral proton-neutron core

(b) PDR ⁷⁸N; ⁷⁶Ni ⁷⁴Ni ⁷²Ni ⁷⁰Ni 0.8 ⁶⁸Ni dP/dE_ (MeV) 0.6 ⁶⁶Ni 0.4 ⁶⁴Ni ⁶²Ni 8 10 12 14 16 18 20 22 24 6 E (MeV)

⁶²Ni

10 12 14 16 18 20 22 24

E (MeV)

Mass A FIG. 11. (Color online) Mass number dependence of Ni isotopes of GDR (left panels) and PDR (right panels) parameters. In calculations, we use $E_{in} = 100 \text{ MeV/nucleon}$, b = 24 fm, $C_{sym} = 32 \text{ MeV}$, and the soft EOS without MDI.

(a) GDR

10.4

10.2

10.0

9.8

0.6

0.4

0.2

4.5

4.2

3.9

60 62 64

System size dependence

FIG. 5. (Color online) Incident energy dependencies of GDR (left panels) and PDR (right panels) parameters for ⁶⁸Ni. From the upper panel to bottom panel, it corresponds to the peak energy (E_{ν}^{c}) , strength (S_{ν}^{c}) , and FWHM (Γ_{ν}^{c}) , respectively. In calculations, we use b = 24 fm, $C_{sym} = 32$ MeV, and the soft EOS without MDI.

Energy dependence

Ni+Au collision

C. Tao et al., PRC 87, 014621(2013)

CAON

FIG. 10. (Color online) Mass number dependence of GDR (a) and PDR spectra (b) for Ni isotopes. In calculations, we use $E_{in} =$ 100 MeV/nucleon, b = 24 fm, $C_{sym} = 32$ MeV, and the soft EOS without MDI.

Particle Ratio

 $DR(^{124}Sn/^{112}Sn) = 1.19$ $DR(^{132}Sn/^{112}Sn) = 1.32$

Collaboration

Domestic

- Korea University
- Neutron detector R&D
 - TPC R&D
- GEANT-4 simulation
- Chonbuk National University
 - Low energy physics
 - GEANT-4 simulation
- Pusan National University
 TPC R&D
- Kyungpook National University
 Si detector R&D
- Inha University
 - TPC tracking algorithm

International

GSI

- Triggerless DAQ
- Diamond detector
- GANIL, Saclay, RIKEN, J-PARC
 - TPC electronics

23 people from 6 institutes
Looking for more collaborators from
both domestic and international
To form international collaboration

Budget

Item	Budget (M USD)
Low Energy Detector & Electronics	3.3
High Energy Detector & Electronics	26.7
Start Counter & Solid Target	0.6
DAQ & DAQ Electronics	2.2
Total	32.8 (-11.2)
Currently available budget	23.4 (21.6)
Item	Budget (M USD)
Dipole Spectrometer	8.9
Si-CsI	2.3
Total	11.2

In order to fit to currently available budget, dipole spectrometer and Si-CsI detecter at high energy experimental setup will be for the upgrade

- •Forward fragmentation measurement
- •PDR/GDR resonance measurement
- •Nuclear structure study (e.g. Coulomb breakup)

Institute for Basic Science

2012				2013				2014				2015			2016			2017				2018				2019				2020			
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3 Q4		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2
B	DS	5 TDR																															
	Optics calcula					ation																											
		Magnet R&D												Magnet production																			
		Detector R&D																															
		Electronics, DAQ R&D																															
		Low energy detector, electronics, DAC production										DAQ) LAMPS-L Commi installation ssioning							Experiment													
		High energy de											gy det	letector, electronics, DAQ productio					ictior	1	LAMPS-H installation			[1	Cor ssio	nmi ning							

Detectors in ZDS

- Particle identification of RI beam
 - Select nuclei of interest
 - Experiment with several nucleus at the same time

CAON

*** B** ρ - **\DeltaE-TOF** method

Summary

•RAON is RI beam accelerator in Korea

-RAON will provide high purity, high intensity various RI beams (e.g. 10⁷ pps ¹³²Sn at 250*A* MeV)

•Large Acceptance Multi-Purpose Spectrometer (LAMPS) at RAON

-Study of nuclear symmetry energy with RI and stable beam

-Two detector setup for low and high energy

Low energy: Si-CsI detector & neutron detector

▶High energy: Solenoid spectrometer (solenoid magnet + TPC + plastic scintillators for trigger & ToF + Si-CsI detector^{*})

& neutron detector array

& dipole spectrometer (magnet system + focal plane detector)*

*for future upgrade

√To cover entire energy range of RAON with complete event reconstruction within large acceptance

- -Design of experimental setups is almost complete
- -Detector R&D is ongoing

-Getting more collaborators from both domestic and oversea

Forming international collaboration

Any comments or suggestions are welcome!!!

