Detector R&D Activities for CMS and RAON

Kyong Sei Lee

on behalf of the Korea University Group

Contents

- **1. MRPCs for CMS/LHC**
- 2. Scintillation & Gas Ionization Detections for Nuclear & Medical Science
- **3. Detector R&D for LAMPS at RAON**

MRPC: PHASE II upgrade for CMS/LHC

1. RPCs System for the Compact Muon Solenoid

(CMS/TDR LHCC/CERN 97-32)

- RPCs in Barrel + Endcap cover η < 2.1
- The angular coverage ~ 3 π

Barrel RPCs

Endcap RPCs

Muon trigger performances of the current double-gap RPC system

Workshop

2. PHASE I upscope: 4-th RPC station RPC system

3. PHASE II upscope: high-y trigger (RPCs & GEM)

(Many R&Ds and proposals)

1. GEM trackers at RE1/1 \rightarrow **GE1/1**

- High priority

- RPCs closest to the collision vertex with presence of strong magnetic fields.
- Expect effective rejection of the beam backgrounds (γ , n, π) of 1 ~ 2 kHz/cm² at $L = 10^{35}$ cm⁻² s⁻¹

Basic structure

2 ~ 3 GEM plates : for the amplification of X-ray signals Two dim. microstrips (~ 100 \mu spacing : to pickup the avalanche images)

6

Eta=0.92

2013-11-04

2. Multi-gap RPCs (HPL or glass) for RE2/1, RE3/1 and RE4/1

◆ Direction → Smaller detector charges
 a) To reduce aging at high rate background
 b) To enhance rate capability

- Lower avalanche charge
- Rate capability ~ 1/ ρ
- Smaller $q_{\rm e} \rightarrow$ higher rate capability
- Typical glass 6 or 8-gap RPCs (timing RPCs)
- ✓ q_e < 1 pC
- ✓ $\rho = 10^{12} \sim 10^{13}$ Ωcm for normal glass = ~10¹⁰ Ωcm (ceramic & low res. glass)

Thin-glass MRPC (timing RPCs)

But we need Panel-shape RPCs for future CMS muon triggers in CMS/LHC. Expected particle rates at L = 10³⁵ s⁻¹ cm⁻²

- ✓ At RE1/1 (nearest in 1.6<η<2.4) , $N \sim 1 \text{ kHz cm}^{-2}$
- ✓ At RE2/1, RE3/1 and RE4/1 (others in 1.6<η<2.4), N < 300 Hz cm⁻²
- 1) 4-gap normal-glass RPCs (rate capability ~ 1 kHz cm⁻²)
- 2) 8-gap low-resistive-glass RPCs (rate capability > 5 kHz cm⁻²)
- 3) 4-gap HPL RPCs (rate capability > 5 kHz cm⁻²)

Korea University proposed 4-gap RPCs

- 4-gap HPL RPCs
 - ✓ Expected rate capability N > 5.0 kHz cm⁻²
 - ✓ Aiming for RE1/1
 - $\checkmark\,$ Triggers only, no good information for positions
- 4-gap thin normal glass RPCs
 - ✓ Expected rate capability $N \sim 1.0$ kHz cm⁻²
 - ✓ Aiming for high-quality trigger for RE2/1, RE3/1, and RE4/1
 - \checkmark Having partially tracking probability: position resolution ~ 2 mm
 - \checkmark Cathode-strip readout \rightarrow division of strip along η

Thin-glass 8-gap MRPC (ALICE timing RPCs)

2013-11-04

Japan-Korea PHENIX Collaboration Workshop

4-gap panel-shape MRPC for CMS

Rate capability study for a prototype 4-gap HPL RPC

Workshop

²⁰¹³⁻¹¹⁻⁰⁴

Efficiencies of muons tagging with γ 's

Cluster sizes of muons tagging with γ 's

Efficiencies & Rate

Tagging muons with ϵ >0.95 with presence of 5 kHz cm⁻² γ -background hits

2013-11-04

Japan-Korea PHENIX Collaboration Workshop

Multilayered Dose-Verification Detectors in Particle Therapy

1. Introduction

- Motivation of research: fast & precision measurements for verification of the therapeutic hadron beam in particle therapy
 - Proton beam (100 ~ 300 MeV)
 - ➢ Heavy-ion beam (~ 400 MeV)

✤ Goal: development of fast detector system for therapeutic beams

- Scattered beams (passive, static)
- Dynamic wobbled and pixel-type beams (dynamic)
 - → Detection required for fast time-dependent dose measurements
- Dose measurement in a 3-dimensional way
 - > Bragg peak \rightarrow only one dimensional distribution for range
 - Precision measurement for the lateral dispersion

Simultaneous measurement of dose with a multilayer detector

→ Enable to reduce scan times and labor in the dose-verification procedure

HIMAC (Heavy Ion Medical Accelerator Facility)

HIMAC (Heavy Ion Medical Accelerator Facility)

Workshop

1. Scintillation-fiber detectors

each bin size : 0.1042 g/cm² absorber : 0.1107 cm-thick PMMA + 0.0065 cm-thick ESR = 0.0376 g/cm²

Bicron BCF-60 fibers

- > 1.0-mm thick squared and double-clad
- Light yield ~ 7000 /MeV
- ➤ Maximum yield at 530 nm

Two single detector layers

Tests with MC50 proton beams at KIRAMS

2. Thin Ionization Gas Detectors

- Single-GEM loaded detector
- Plane detector without a GEM foil

★ Gaseous detector → can avoid the difficulty in calibration due to the severe nonlinearity to ELOSS

- \rightarrow Measured data directly reflects the doses (*i.e.*, *dE/dx*)
- → More reliable for heavy-ion measurements

Thin detector thickness compared to wire chambers

 \rightarrow Advantageous for building multilayer detectors

Radiation hardness

 \rightarrow Harder compared to scintillator materials

***** Use GEM: the detector gain can be adjusted.

 \rightarrow Large dynamic range for measureable beams (10 pA ~ 10 nA)

GEM: a thin copper coated electrode with a 2d hole-pattern (made in Korea)

- > Thickness of Kapton foils = 50 μ m
- ➢ Hole diameter ~ 50 µm
- ➤ 2d-pitch = 140 µm

Single-GEM detector for a dose-measurement detector

Propose for both proton and heavy-ion beam

- ✓ Beam-profile detectors (thin Al coated PET for the cathode)
- Unit detectors for dose-measurement system
 (cathode printed on 1.6-mm thick PCB to allow energy loss)

~ A 10 layer detector system (final goal)

- Active area = 160.0 x 160.0 mm²
- Multilayer PCB with FR4 (epoxy glass)
- GEM size (measurable field) = 160 x 160 mm²
- \blacktriangleright Capacitance = 1.59 x 10⁻⁸ F
- $\succ \Delta V_{GEM} = 400 V$
 - 2.5 kV/cm at drift region
 - 3.1 kV/cm at induction region
- Separate distributions for x & y
- > 128 channel for each direction
- Pitch= 1.25 mm

Schematics of a single-GEM detector

Signal plane (0.2 mm PCB)

- \checkmark Strips and pad patterns on upper layer
- ✓ Connection lines for pads on bottom

Signal readout:

- ✓ Four 64-pin ribbon connectors and two twist-pair cables with 1.25-mm pitches
- ✓ Maximum channel sensitivity:

5.2 ~ 384 nA/ch

- ✓ Charge induced at pad or strip fed into directly QDC chips (128 channels) in the signal processing board
- ✓ Data translation protocol: USB3
- ✓ Data bit transfer rate: 10 Mbps
- ✓ Datum transfer rate: 8.7 ~ 35 kHz
 x and *y* distributions (128 x 128) produced every 28.6 µs (35 kHz)

Gas mixture

✓ 70% Ar + 30% CO₂ (C30 gas)

2013-11-04

Japan-Korea PHENIX Collaboration Workshop

2013-11-04

Japan-Korea PHENIX Collaboration Workshop

Induced charges for 1 s (accuracy for 43-MeV proton-beam currents ~ 5%)

Single-GEM loaded unit detector v = 328.14x + 0.27062 2.5 3 3.5 ibeam (nA)

380

400

Japan-Korea PHENIX Collaboration Workshop

3. Summary and Milestones

1) Scintillation-fiber technique in particle therapy

- Fast and quantitative dose data for therapeutic proton beams
 - ✓ 1% accuracy for spatial distributions (by Gaussian fits)
 - ✓ 3% fluctuation in time
 - \rightarrow Enables to track the beam dose with 250-Hz DAQ speed for dynamic beams.
- ✤ Inorganic scintillators like scintillation fibers
 - → May NOT be adequate for measurement of heavy ions due to higher ELOSS (2nd order nonlinear response would be significant)

2) GEM technique in particle therapy

- ✤ High statistical accuracy confirmed from the proton-beam test at KIRAMS
 - ✓ Designed faster electronics (35 kHz DAQ)
 - ✓ Confirmed the linear responses to beam current
 - ✓ Accuracy of measuring beam induced charges ~ 2% → Fairly good to
 - Beam measurements
 - Dose-verifications for both proton and heavy-ion beams,
- ✤ Linearity of the detector responses to ELOSS to be confirmed.
- Then, we build a 8 ~ 10-layer detector and test it with desirable dynamic-mode therapeutic protons (carbons if possible).

Neutron Detectors for LAMPS at RAON

2013-11-04

Workshop

2. LAMPS at RAON

 Large Acceptance Multi-Purpose Spectrometer to maximize the use of nuclear physics researches for neutron-rich nuclei

Main purpose for Symmetry-Energy research

Understanding astronomical phenomena in neutron stars, black holes, and super novae by the EOS of nuclear matter at high density

Pygmy Dipole & Giant Dipole Resonances

> Neutron halos and exotic nuclei lying near neutron drip lines

2. Conceptual designs of LAMPS

High-energy experiment (250 AMeV)

- Solenoid spectrometer equipped with a 3π-Sr TPC
- Dipole spectrometer with a focal plane detector system
- ✓ Large acceptance of neutron detectors via TOF measurement

Low-energy experiment (< 20 AMeV)

- ✓ Vacuum system equipped with Si-CsI detectors
- ✓ Large acceptance of neutron detectors via TOF measurement

LAMPS: design for low-energy experiment

Vacuum chamber

- Si-CsI array (charged particles & γ)
- $\checkmark \Delta E/E \sim 10^{-2}$
- $\checkmark\,$ TOF measurement for heavy particles
- ✓ Particle ID

Neutron detector array

- ✓ Acceptance = 100 ~ 300 mSr
- ✓ $\Delta E/E \sim 5.0 \text{ x } 10^{-2} \text{ via TOF measurements}$

3. Neutron detectors for high-energy experiment

Proposed structure: 4 layers of plastic scintillators (2-m long)

- + 1 Veto plastic layer for charged particle rejection
- ✓ Energy range to measure: 10 ~ 300 MeV
- ✓ Acceptance = 100 mSr
- ✓ $\Delta E/E \sim 2 \times 10^{-2}$ via TOF measurements
- ✓ ε = 0.60 for single-neutron events (GEANT4)
 - = 0.18 for double-neutron events (GEANT4)

Single detector module for high-energy experiment

Workshop

2013-11-04

Test with a ⁶⁰Co & ²⁵²Cf sources

- > Time-Of-Flight for γ and n
- ➤ TOF distance = 1.0 m
- 5-cm thick 5-cm diameter disk-shape plastic scintillator for event triggers
- Maximum TOF to measure = 50 ns
- > 3.78 *n* per fission decay and γ 's from gamma transitions

TOF measurement for fission neutrons and gammas from ²⁵² Cf

1-m bar unit detector for high-energy experiments

- ✓ Time resolution ~ 600 ps
- ✓ Position resolution ~ 8.0 cm
- \checkmark Electron-equivalent energy with 50% efficiency ~ 700 keV
- ✓ Neutron energy with 50% efficiency ~ 4.5 MeV

4. Neutron detectors for low-energy experiment

> Neutron energy range to detect with ε > 0.7 = 2.5 ~ 30 MeV

✓ Minimum detectable energy ~ 1 MeV with 300-ns TOF

Basic structure of unit pixel detector: 3 x 3 detector modules

✓ Single detectors: 10 x 10 x 20-cm³ plastic scintillator blocks

> Neutron energies measured by a TOF method

- \checkmark $\Delta \textit{E/E} \sim$ 5.0 x 10⁻² assuming a 3-m-long TOF length
- ✓ Depth-of-interaction in the 20-cm long detector \rightarrow Energy resolution

Pixel detectors for low-energy experiments

- ✓ Maximum TOF set to 80 ns
 - \rightarrow 1.4 MeV neutrons (efficiency ~ 0.2)
- $\checkmark\,$ Electron-equivalent energy with 50% efficiency \sim 300 keV
- ✓ Neutron energy with 50% efficiency ~ 2.2 MeV

Advantage of using pixel detectors

- ✓ Light-collection efficiency is higher (Light guide: 21 cm → 5 cm)
- ✓ Expect reconstruction of neutron hits becomes easier
 - \rightarrow Conductive to multi-neutron events

5. Summary & milestones

1. R&Ds of neutron detectors for LAMPS

The proposed designs and the performances of the unit-detector relevant and satisfactory for Symmetry-Energy research

2. Bar-shape neutron detectors for high-energy experiments

- > Detectable range of neutron energy confirmed > 5.0 MeV
- > Time resolution ~ 600 ps $\rightarrow \Delta E/E \sim 2 \times 10^{-2}$ via TOF at 15 m from a target
- Position resolution confirmed ~ 8 cm

3. Pixel-type neutron detectors for low-energy experiments

- > Minimum neutron energy confirmed with ϵ > 50% < 2.5 MeV
- > Depth-of-interaction of 20-cm long detectors: $\sigma \sim 7.0$ cm
 - $\rightarrow \Delta E/E \sim 5 \times 10^{-2}$ via TOF measurements
- 4. Designs of electronics and DAQ for LAMPS neutron detectors
- Combined modules for discriminations, multi-hit TDC, and FADC
- > 3.5 Gbps data bus electrons to counting rooms

Backup

Detector response for 10 s (bin size = 4-ms)

Fluctuation in time = 3% in sigma

2013-11-04

Ratios of the induced charge

 $q_{\text{GEM}}/q_{\text{NoGEM}} = 1.144 \pm 0.033$

Maximum 192 nA/ch at Gain 5 Maximum 384 nA/ch at Gain 7

Accuracy of measuring beam induced charges for a single detector = 2.0%

i (nA)

Tests with MC50 proton beams at KIRAMS

- 1.0-nA pencil and dispersed beam for calibration
- 0.5-nA pencil beam for dose measurements

Nonlinearity of scintillation response to ELOSS

 \rightarrow Birk's model with two parameters, 1st order *kB* and 2nd order *C*

2013-11-04

Scintillation-fiber-based detector for therapeutic beams (~ 180 MeV protons)

Merits

- ➢ Scintillation fiber → solid detector
 - \rightarrow Data are quantitatively reliable and insensitive to environmental conditions (*T* & *P*), compared to gaseous detectors
- > Thin detector thickness to form multi-layer detector structure
 - \rightarrow Enable to perform simultaneous measurement along the beam range
- > Scintillation fiber with $\rho = 1.05$ g cm⁻³
 - \rightarrow Enable to manufacture the detector system water equivalently.
 - \rightarrow The detector itself is an **water-equivalent phantom** (also ~ tissue equivalent).
- > Relatively low-price multi-channel photodiode for the signal process
 - → Multi-layer detector system equipped with more than 1000 channels

Drawback

- > Scintillation fiber is an organic scintillator
 - → Quenching of signals
 - \rightarrow Difficulty in correction for nonlinearity response to ELOSS

Importance of Symmetry Energy

A.W. Steiner, M. Prakash, J.M. Lattimernand BJP Ellisx Physics Report 411, 325 (2005)
 Workshop

Experimental Observables

Signals at sub-saturation densities

- 1) Sizes of n-skins for unstable nuclei
- 2) n/p ratio of fast, pre-equilibrium nucleons
- 3) Isospin fractionation and isoscaling in nuclear multifragmentation
- 4) Isospin diffusion (transport)
- 5) Differential collective flows ($v_1 \& v_2$) of n and p
- 6) Correlation function of n and p
- 7) $^{3}H/^{3}He$ ratio, etc.

Signals at supra-saturation densities

- 1) π^{-}/π^{+} ratio
- 2) Differential collective flows ($v_1 \& v_2$) of n and p
- 3) Azimuthal angle dependence of n/p ratio with respect to the R.P.
- Correlation of various observables
- Simultaneous measurement of neutrons and charged particles

TPC

- \checkmark Gas: P10 or Ar +CO₂ mixture
- \checkmark Drift field: ~ 150 V cm⁻²
- ✓ Read-out: Triple-GEM & hexagonal pads (5 mm) at both endcaps

Choice of GEMs: higher rate capability of both heavily ionizing particles

Hexagonal pads for a prototype

LAMPS/RAON: exploring a wide range of *N*/*Z* asymmetry

The symmetry energy at sub-saturation density and supra-saturation density with ~ 200 AMeV

Si-CsI arrays

- ✓ Energy measurement and particle ID for high-η nuclear fragments
- Determination of reaction planes of HI collisions

Japan-Korea PHENIX Collaboration

Japan-Korea PHENIX Collaboration

Workshop

LAMPS probes symmetry-energy up to $\rho_0/\rho \sim 2$ with 200 AMeV

Bao-An Li, PRL 88, 192701 (2002) Phys Rep. 464 113 (2008)

At nuclear matter density $\rho > \rho_0$ (= 0.16 fm⁻³)

Case 1: $E^{a}_{sym}(\rho) = E_{sym}(\rho_{0}) u$, $u_{c} = \rho/\rho_{0}$ Case 2: $E^{b}_{sym}(\rho) = E_{sym}(\rho_{0}) u (u_{c} - u)/(u_{c} - 1)$, $u_{c} = \rho/\rho_{0}$ $E^{b}_{sym}(\rho)$ Case 1

LAMPS: design for high-energy experiment

Solenoid spectrometer

- Solenoid magnet (0.6 ~ 1.5 T)
- ► TPC (△P/P ~ 10⁻²)
- > Si-CsI array ($\Delta E/E \sim 10^{-2}$)
- Plastic barrel detectors for trigger

Dipole spectrometer

- > Quadruple-Dipole magnets
 (QD or QQD) for focal plane
 (△P/P ~ 4 x 10⁻⁴)
- Drift chambers
- > TOF wall

Neutron detector array

- Acceptance ~ 100 mSr
- $\blacktriangleright \Delta E/E \sim 2 \times 10^{-2}$

Si-CsI arrays

- Energy measurement and particle ID for both nuclear fragments and γ's
- \succ 100 μm thick Si
- > 50-mm thick CsI
 - ✓ Full absorption for all charged particles
 - $\checkmark \epsilon > 70\%$ for γ 's
- Another solution
- Thin plastic-CsI arrays for measurement of lower-energy HI fragments

17.5°

17.5°

Particle occupancies (PHITS) Black: all charge particles Red: γ BLUE: protons

0.03

145°

145°

Beam schedule	Science program	Exp. facility [♯]	Beam species on exp. target ⁺		Beam Intensity on exp. (pps)
			Day-1	Extra 2 years	(required/expected)
2018.Q2 ~ from SCL1 (<18.5 MeV/u)	Nuclear structure SHE search, rp-process, Spin physics	RS	⁵⁴ Cr	⁶⁴ Ni ^{26m} Al (²⁸ Si), ²⁵ Al (²⁸ Si), ⁴⁴ Ti (⁴² Ca), ^{14,15} O (¹⁵ N)	¹⁵ N, ⁵⁴ Cr ²⁸ Si, ⁴² Ca, ⁵⁰ Ti ²⁵ Al, ^{26m} Al, ⁴⁴ Ti, ^{14,15} O: (10 ⁵⁻⁶)
	Pigmy dipole resonance	LAS-L	⁵⁸ Ni	⁴⁰ Ca, ¹¹² Sn	(10 ⁶⁻⁸ / <10 ⁹⁻¹⁰)
	Biological effects	BM	¹² C		(<10 ¹² />10 ¹²)
	New materials, Polarized beam	β-NMR	⁸ Li by $(d, n)(n, \alpha)$ or $(p, 2p)$		⁸ Li (10 ⁸ /10 ⁹)
	Neutron cross section	NSF	n by (p,n) and (d,n)		n (< $10^{12}/10^{12}$)
2019.Q4 ~ from ISOL (~5 keV/u)	Hyperfine structure, Mass measurement	Ion Trap LS	¹³² Sn	¹³⁰⁻¹³⁵ Sn	132 Sn (<10 ⁵ / 10 ⁷) [‡] , $^{130-135}$ Sn (10 ³⁻⁶ / 10 ³⁻⁷)
2019.Q4 ~ ISOL-SCL3 (<18.5 MeV/u)	r-process	RS	¹³² Sn	¹³⁰⁻¹³⁵ Sn	¹³² Sn (10 ⁶ / 10 ⁷), ^{65,66} Ni (10 ⁶⁻⁸ / 10 ⁶⁻⁷)
	Pigmy dipole resonance	LAS-L	¹³² Sn	⁵⁰⁺ⁿ Ca, ⁶⁰⁺ⁿ Ni, ¹⁰⁶⁺ⁿ Sn	
2019.Q4 ~ SCL1-SCL2 (~ hundreds MeV/u)	New materials	μSR		μ ⁺ by (p, πx)	$\mu^+ (10^8 / 10^9)$
	Biological effects	BM		¹² C	(<10 ¹² />10 ¹²)
	Baseline experiments, Spin physics	LAS-H	⁴⁰ Ca	⁵⁸ Ni, ¹¹² Sn, ¹³² Xe	(10 ⁶⁻⁸ / <10 ⁹⁻¹¹)
2020.Q2 ~ SCL1-SCL2-IF (~ hundreds MeV/u)	Nuclear structure	ZDS & HRS	¹⁰⁰⁺ⁿ Sn	¹⁰⁰⁺ⁿ Sn	¹²⁸ Sn (10 ⁶⁻⁸ / 10 ⁷) ¹³² Sn (10 ⁶⁻⁸ /10 ⁷) [‡]
	Symmetry energy	LAS-H	¹³² Sn	⁴⁴⁺ⁿ Ca, ⁶⁰⁺ⁿ Ni, ¹⁰⁶⁺ⁿ Sn, ¹⁴⁴ Xe	
2020.Q4 ~ ISOL-SCL3-SCL2-IF(X) (~ hundreds MeV/u)	Nuclear structure	ZDS & HRS	¹³² Sn		¹³² Sn (10 ⁶⁻⁸ /10 ⁷)‡
	Symmetry energy	LAS-H	¹⁰⁶⁺ⁿ Sn	¹³³⁺ⁿ Xe	¹⁴⁴ Xe (10 ⁶⁻⁸ / 10 ⁶)
2021.Q2 ~ ISOL-SCL3-SCL2-IF (~ hundreds MeV/u)	Nuclear structure	ZDS & HRS			⁷⁸ Ni (/<2)

RS: Recoil Spectrometer, LAS: Large Acceptance Spectrometer, BM: Bio & Medical, LS: Laser Spectrometer, NSF: Neutron Science Facility, ZDS: Zero Degree Spectrometer, HRS: High Resolution Spectrometer † Beam species : SI (black), RI (Blue) ‡ Beam purity >90 % for ISOL, 9% for IF

HI collision experiments for Symmetry-Energy with *E*_{beam} < 20 AMeV

Single detectors using conical-shape light guides (3, 5, 21-cm long)

Unit detector module composed of 4-plastic scintillator blocks

