Forward sPHENIX upgrade

Japan-Korea PHENIX collaboration workshop at Sungkyunkwan University in Suwon November 4th, 2013 Yuji Goto (RIKEN)

Hierarchy in Nature

Glashow's ouroboros

Cosmology 1030 cm 1025 cm macroscopic microscopic 10~20 cm 0 **High-energy elementary** Astrophysics particle physics 10~15 cm W.Z. 1015 cm Quark-gluon physics Hadron physics 10-20m 1010 cm **Nuclear** physics 10-5 cm 1 cm

- Quark-gluon physics
 - State and structure of matter
 - Interaction and symmetry (breaking)
- Gap between "quark-gluon" and "hadron"

Nucleon structure

- Constituent-quark model
 - Quarks with the effective mass (caused by the gluon)
 - Explains the magnetic moment of the nucleons
 - But, the quark spin cannot explain the nucleon spin ("spin puzzle")
- Quark-gluon model
 - Current quarks and gluon interaction
 - Initial state of high-energy hadron colliders
- Understanding the differences (or gap) of these models
 - Chiral symmetry (breaking)
 - Confinement

Nucleon structure

- Nucleon: the simplest multi-body system for studying dynamics of confined quarks and gluons
- Simple parton picture
 - 1-dimensional picture: in "longitudinal" direction
 - The nucleon consists of incoherent quarks and gluons
 - Described by the parton distribution functions (PDF)

Origin of the nucleon spin 1/2

- Expected to be explained by the quark spin (from the constituent quark model)
- Experiments
 - CERN-EMC experiment (polarized DIS experiment)
 - Quark-spin contribution

 $\Delta \Sigma = \Delta u + \Delta d + \Delta s = 12 \pm 9(\text{stat}) \pm 14(\text{syst})\%$

- Combining with neutron and hyperon decay data
- Total quark spin constitutes a small fraction of the nucleon spin
- Integration in x = 0 ~ 1 makes uncertainty
- SLAC/CERN/DESY/JLAB experiments
 - More data to cover wider x region with more precision
- Based on the quark-gluon model

 $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta g + L$ Orbital angular momentum Gluon spin contribution

Quark spin contribution

Helicity structure of the nucleon

Polarized in beam or collision direction

$$A_{LL} = \frac{d\sigma_{++} - d\sigma_{+-}}{d\sigma_{++} + d\sigma_{+-}}$$

- $f_q(x)$ or q(x): parton distribution function (PDF)
 - "universal" property of the nucleon same in all reactions

Polarized p+p collision at RHIC

3-dimensional nucleon structure

- Nucleon structure beyond the simple parton picture
- Many-body correlation of partons
 - To describe the orbital motion inside the nucleon
- Parton distribution in transverse direction
 - Extended/generalized picture of the parton distribution
 - Transverse-momentum dependence (TMD)
 - Space distribution (tomography)

November 4, 2013

Transverse structure of the nucleon

• Single transverse-spin asymmetry

$$A_{N} = \frac{d\sigma_{Left} - d\sigma_{Right}}{d\sigma_{Left} + d\sigma_{Right}}$$

• Expected to be small in hard scattering at high energies

$$A_N \approx \frac{m_q \alpha_S}{p_T} \approx 0.002$$

Kane, Pumplin, Repko PRL 41 1689 (1978)

- FNAL-E704
 - Unexpected large asymmetry found in the forward-rapidity region
 - Development of many models based on perturbative QCD

Transverse-spin physics

- For establishment of TMD and higher-twist approach
 - Single transverse-spin asymmetry (SSA) of inclusive hadrons
 - Sivers effect
 - Sivers distribution function (initial state)
 - Collins effect
 - Transversity distribution (initial state)
 - Collins fragmentation function (final state)
 - Higher-twist effect
 - quark-gluon & multi-gluon correlation
- Two milestones
 - non-universality of TMD distribution function
 - sign mismatch of TMD and higher-twist

Non-universality of TMD distribution function

• Opposite-sign contribution of TMD distribution function to SSA in semi-Inclusive DIS (SIDIS) process and Drell-Yan process

ر مومومی (*gb*)

T OFFER T

 $f_{1T}^{\perp q}|_{\text{SIDIS}} = -f_{1T}^{\perp q}|_{\text{DY}}$

- Fundamental property based on gauge invariance of QCD
- Experimental verification required
 - Understanding in wide kinematic range from fixed target experiments to collider experiments
 - Polarized Drell-Yan experiments
 - COMPASS, SeaQuest, RHIC(, GSI-FAIR, NICA, ...)
 - Polarized SIDIS experiments
 - eRHIC

Sign mismatch of TMD and higher-twist

• TMD description at low p_{τ} region, higher-twist description at high p_{τ} region, and consistent description in the middle region

$$T_{q,F}(x,x) = -\int d^2k_{\perp} \frac{|k_{\perp}^2|}{M} f_{1T}^{\perp q}(x,k_{\perp}^2)|_{\text{SIDIS}}$$

- But, sign mismatch of each description obtained from experiments
 - Large contribution from Collins effect in transversely-polarized proton collisions?
 - Polarized SIDIS experiment at high x region?

Present timeline

Years	Beam Species and Energies	Science Goals	New Systems Commissioned
2013	• 510 GeV pol p+p	Sea quark and gluon polarization	 upgraded pol'd source STAR HFT test
2014	 200 GeV Au+Au 15 GeV Au+Au 	 Heavy flavor flow, energy loss, thermalization, etc. Quarkonium studies QCD critical point search 	 Electron lenses 56 MHz SRF full STAR HFT STAR MTD
2015-2016	 p+p at 200 GeV p+Au, d+Au, ³He+Au at 200 GeV High statistics Au+Au 	 Extract η/s(T) + constrain initial quantum fluctuations More heavy flavor studies Sphaleron tests 	PHENIX MPC-EX Coherent electron cooling test
2017	No Run		Electron cooling upgrade
2018-2019	 5-20 GeV Au+Au (BES-2) 	 Search for QCD critical point and deconfinement onset 	STAR ITPC upgrade
2020	No Run		sPHENIX installation
2021-2022	 Long 200 GeV Au+Au w/ upgraded detectors p+p/d+Au at 200 GeV 	 Jet, di-jet, γ-jet probes of parton transport and energy loss mechanism Color screening for different QQ states 	• sPHENIX
2023-24	No Runs		Transition to eRHIC

Detector upgrade project of the PHENIX experiment

Years	Beam Species and Energies	Science Goals	New Systems Commissioned
2013	 510 GeV pol p+p 	Sea quark and gluon polarization	 upgraded pol'd source STAR HFT test
2014	 200 GeV Au+Au 15 GeV Au+Au 	 Heavy flavor flow, energy loss, thermalization, etc. Quarkonium studies QCD critical point search 	 Electron lenses 56 MHz SRF full STAR HFT STAR MTD
2015-2016	 p+p at 200 GeV p+Au, d+Au, ³He+Au at 200 GeV High statistics Au+Au 	 Extract n/s(T) + constrain initial quantum fluctuations More heavy flavor studies Sphaleron tests 	 PHENIX MPC-EX Coherent electron cooling test

- MPC (Muon Piston Calorimeter)
 - Electromagnetic calorimeter
- MPC-EX
 - Preshower detector
 - Under construction now
 - Commissioning in 2014
 - Experiment in 2015-2016
- 3.1 < η < 3.8
 - Installed in the muon piston

MPC-EX

- 3.1 < η < 3.8
 - Installed in the muon piston
- Direct photon asymmetry
 - To distinguish the Sivers effect and the higher-twist effect
- Collins asymmetry in jets
 - π^0 correlation with jet-like clusters

Detector upgrade project in the PHENIX experiment

• sPHENIX

- Barrel upgrade
- Forward upgrade
- Partial installation and commissioning in 2018-2019
- Completion and experiment in 2021-2022
- ePHENIX at eRHIC
 - Transition to eRHIC in 2023-2024
 - Commissioning and experiment start in 2025

2	018-2019	•	5-20 GeV Au+Au (BES-2)	•	Search for QCD critical point and deconfinement onset	•	STAR ITPC upgrade
2	1020	•	No Run			•	sPHENIX installation
2	021-2022	•	Long 200 GeV Au+Au w/ upgraded detectors p+p/d+Au at 200 GeV	•	Jet, di-jet, γ-jet probes of parton transport and energy loss mechanism Color screening for different QQ states		sPHENIX
2 Nover	2 023-24 mber 4, 202	•	No Runs		_	•	Transition to eRHIC

sPHENIX barrel upgrade

- Baseline
 - Compact jet detector
 - Using upgraded RHIC accelerator
 - For precision measurement of jet, dijet, photon-jet correlation to understand the nature of QGP
- Extension
 - Additional tracking layers
 - Preshower detector
 - For heavy-flavor and internal jet structure measurements

sPHENIX forward upgrade

- Open geometry
 - Wide kinematic coverage of photon, jet, leptons and identified hadrons
- Compatible design for eRHIC detector (ePHENIX)
 - Constraint from IR design of eRHIC (|z| < 4.5m)

sPHENIX forward upgrade

- Sivers effect in Drell-Yan process
 - Valence quark region at x~0.2 with $1_{-0.02}$ < η < 4 coverage
- Jet asymmetry
 - Sivers effect or higher-twist effect
- Asymmetry inside of jets
 - Collins effect

Tracking

- Design parameters
 - Charge sign reconstruction to high momentum
 - dp/p~0.004p for 3- σ charge sign reconstruction at p~60 GeV
 - Needed for both jets and Drell-Yan
 - Enough momentum resolution to use RICH
 - dp/p~0.004p for reasonable ring separation between particle species
 - Constrain J/ ψ peak leakage for Drell-Yan
- Current plan
 - 2 new layers of silicon (finely ϕ segmented) and "rotated" FVTX layers
 - 3 GEM layers

Magnet

- Magnetic field without causing too much stress or background
 - The most challenging part of the forward sPHENIX design

- Passive field shaper + BaBar magnet
 - HCal as a return yoke
 - Passive field shaper surrounding the beam pipe e.g. made by Hiperco-50 (49% Co + 49% Fe alloy) with high magnetic saturation
 - We can achieve the necessary resolution over a large range in pseudo-rapidity

November 4, 2013

Calorimetry

- Design parameters
 - Aid in background rejection for Drell-Yan of e⁺e⁻ channel
 - Reasonable energy resolution for jets and EM particles
 - A+A needs fine segmentation, especially at high η
- Current plan
 - EMCal: restack of the current PHENIX EMCal and MPC with SiPM readout
 - HCal: required resolution is likely not very high
 - Pre-shower?: a simple GEM tracker in front of absorber (W, Pb)

Particle-ID - RICH

- Design parameters
 - Hadron-ID: $\pi/K/p$ separation above a few GeV/c and to a high momentum ~70 GeV/c
 - Drell-Yan particle-ID
 - Electrons/positrons need sufficient e/π separation
 - Muons need sufficient shielding and identification

Possible 1st-stage configuration

ePHENIX

- 1st stage eRHIC detector
 - 5GeV-10GeV electron beam
 - 10³³ cm⁻²s⁻¹ luminosity
- Inclusive DIS
 - Helicity distribution of quarks and gluons
- Semi-inclusive DIS
 - TMD & higher-twist
- Exclusive & diffractive measurements
 - GPD measurement by DVCS (Deeply Virtual Compton Scattering) and HEMP (Hard Exclusive Meson Production) measurement
 - Transverse space distribution inside the nucleon
 - tomography

Summary

- The forward sPHENIX upgrades will give us great opportunities for studying the nucleon spin structure toward understanding of the extended 3-dimensional nucleon structure (and cold nuclear matter)
 - Sivers asymmetry in Drell-Yan process
 - Jet asymmetry measurements
 - (Search for gluon saturation)
- Two milestones with sPHENIX forward upgrade
 - Sign change of the TMD distribution function
 - Polarized Drell-Yan experiment at RHIC and polarized SIDIS experiment at eRHIC
 - Sign mismatch of TMD and higher-twist
 - Distinguish Sivers/higher-twist and Collins/transversity
- Detector design and studies are ongoing with physics requirements
 - Detector configuration
 - Evolution to ePHENIX toward electron-proton collisions at eRHIC

Backup Slides

Outline

- Introduction
 - Nucleon (spin) structure
- Forward sPHENIX upgrades
- Design
- Physics
 - 3-dimensional nucleon structure
 - Cold nuclear matter
- Evolution to ePHENIX

Nucleon structure

- Constituent-quark picture
 - Magnetic moment of the nucleons explained
 - Deeply-inelastic scattering (DIS) experiments have measured quark-spin contribution to the nucleon spin to be about 30%
 - "Spin Puzzle"
- Quark-gluon picture
 - DIS experiments measure current quarks instead of constituent quarks
 - Gluon interaction and Nucleon structure with gluons necessary
 - Initial state of high-energy hadron collision experiments
- Understanding gap of hierarchy in nature between these pictures
 - Chiral symmetry breaking
 - Confinement

"Spin Puzzle" to 3-dim picture of the nucleon

 $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta g + L$ Orbital angular momentum Gluon spin contribution

Quark spin contribution

- Longitudinally polarized proton collision at RHIC
 - Helicity distribution of gluons
 - Helicity distribution of sea-quarks with W boson measurement
- Toward understanding of the "Spin Puzzle" with extended picture of the nucleon structure
 - 3-dimensional description of the nucleon structure
 - Quantum many-body correlation of quarks and gluons
 - Transverse quark-gluon distribution inside the nucleon
 - TMD (Transverse-Momentum Dependence) factorization and collinear higher-twist factorization
 - Transverse-momentum distribution inside the nucleon
 - GPD (Generalized Parton Distribution)
 - Space distribution, tomography
 - Understanding angular motion inside the nucleon

Nucleon structure and parton reaction

- Precision measurement of PDFs
 - Helicity structure of the nucleon

$$A_{LL} = \frac{d\sigma_{++} - d\sigma_{+-}}{d\sigma_{++} + d\sigma_{+-}}$$

- Transverse-spin phenomena $A_{N} = \frac{d\sigma_{Left} - d\sigma_{Right}}{d\sigma_{Left} + d\sigma_{Right}}$
 - Many-body correlation of partons
 - TMD (transverse-momentum dependent) factorization
 - Transverse structure of the nucleon
 - Higher-twist effect on collinear factorization
 - Parton reaction

Transverse spin asymmetries at RHIC

Forward rapidity π^0 at STAR at $\sqrt{s} = 200 \text{ GeV}$

Forward identified particles at BRAHMS

TMD non-universality

- Opposite-sign contribution to the transverse-spin asymmetries in the semi-inclusive DIS process and the Drell-Yan process
- Fundamental QCD prediction based on gauge invariance
- Verification is an important milestone for the field of hadron physics
- Competitive program in fixed target experiments and in collider experiments

TMD and higher twist

- p_{τ} distribution
 - Small pT: described by the TMD factorization
 - Large pT: described by the collinear higher-twist factorization
 - Intermediate pT: identity in TMD and higher-twist
- Need more statistics
 - To find $1/p_T$ at high p_T

TMD and higher twist

- At small p_{τ}
 - Described by the TMD (Transverse Momentum Dependent) factorization framework
 - Sivers mechanism
 - Correlation between the transverse spin of the nucleon and intrinsic p_T of partons in the initial state
 - Collins mechanism
 - Correlation between the transverse spin of the parton and p_T of hadrons in the final state
- At large p_{τ}
 - Described by the collinear factorization framework
 - Higher twist effect
 - Spin-dependent p_T components generated through quarkgluon and multi-gluon correlations
- At intermediate p_{τ}
 - Identity of the Sivers mechanism and the higher twist effect

Collins effect and transversity

- Azimuthal anisotropy in the distribution of hadrons in final-state jets
- Transversity measurement with single identified hadrons (Collins fragmentation function) or with identified hadron pairs (interference fragmentation function)
 - Determination of the tensor charge of the nucleon
 - Test of the Lattice QCD prediction

- Collins asymmetry inside the jet
 - TppMC simulation
 - Collins/Sivers functions from Torino
 - Transversity from Soffer bound
 - *p*_T > 1 GeV/*c*
 - From Ralf Seidl

Stages of PHENIX detector upgrades

- Barrel sPHENIX upgrades
 - Compact jet detector at midrapidity with high-rate capability
 - Precision jet / dijet / photon-jet measurement to understand the nature of the strongly coupled QGP
 - Future options to add tracking and preshower for heavyflavor quarkonia and internal jet structure measurements

Stages of PHENIX detector upgrades

- Forward sPHENIX upgrades
 - Open geometry for wide kinematic coverage of photon / jet / leptons / identified-hadrons
 - Understanding 3-dimensional (TMD) quark-gluon structure of the nucleon and nuclei
 - Measurement of the nuclear gluon distribution and search for gluon saturation at small-x
- Evolution to ePHENIX at eRHIC
 - 3-dimensional space structure (tomography) of the nucleon and nuclei
 - Precision understanding of strongly-coupled QGP by knowing the initial state

Forward sPHENIX design

- Compatible design for eRHIC
 - Constraint from IR design
 - focusing and bending magnets for the electron-ion collision
 - 4.5 m from IP available in z direction
 - Hermeticity for exclusive measurements
- Magnet discussion
 - Piston
 - Dipole
 - Toroid
 - Solenoid extension
- Detector configuration
 - Charged-particle tracking (e.g. GEM)
 - Particle identification (e.g. RICH)
 - EM and hadron calorimeters
 - Vertex detector? (silicon or GEM?)
 - (Roman pot detector for exclusive measurements at eRHIC)
- More discussion by Joe Seele this afternoon

Forward sPHENIX design

- Forward field shaper
 - Passive piston
 - Total flux much enough?
 - High resolution tracking necessary (silicon detector)


```
From Jin Huang
```

Cold Nuclear Matter (CNM) physics

- Measurement of the nuclear gluon distribution $G_A(x)$
 - To know initial state of heavy-ion collisions
 - precision understanding of strongly-coupled QGP
- Search for gluon saturation, or suppression of G_A(x) at small-x and verify CGC (color glass condensation) framework
 - CGC: effective field theory to describe the saturated gluon
- Energy loss of partons in CNM and its relation to p_T broadening
- Hadronization mechanism and time scales

CNM physics at PHENIX

- Current measurements
 - J/ ψ and hadron-hadron correlations over a broad range of rapidity
 - Sensitive to extended range of x
 - Open heavy-flavor and a first look at Drell-Yan
 - With FVTX installed in 2012
 - Comparison data to J/ψ
- MPC + MPC-EX upgrade (2014 –)
 - More details by John Lajoie this afternoon
 - Electromagnetic calorimeter + preshower
 - 3.1 < η < 3.8 in the muon piston
 - Prompt-photon

CNM physics at forward sPHENIX

- Quarkonia
- Vertex-tagged open heavy-flavor
- Inclusive hadrons
- Fully-reconstructed jets
- jet-jet correlations
- Drell-Yan
 - Much more extended kinematic reach
 - Smaller statistical and systematic uncertainties
 - Different energies and nuclear species

TMD evolution

- Recent theoretical progress in the derivation of the evolution equation for TMD parton distribution and fragmentation functions
- Comparison of the asymmetries at fixed-target energies and collider energies for test of the TMD evolution
- QCD analysis of TMD observables to be possible

Transverse spin asymmetries at PHENIX

- MPC-EX (2014 –)
- Prompt photon asymmetry
 - To distinguish the Sivers effect and the hither-twist effect
- Collins asymmetry in jets
 - π^0 correlations with jet-like clusters

- Sivers effect in Drell-Yan process
 - $\sqrt{s} = 500 \text{ GeV}$
 - 1 < η < 4
 - 4 GeV < mass < 8 GeV
 - cover the valence-quark region around x_{Bi} = 0.2
 - comparison with SIDIS measurements
 - large asymmetry
 - $3 < \eta < 4$ is important to explore higher x_{Bi} region

- Jet asymmetry measurement
 - Sivers or higher-twist effect

- Asymmetry inside the jet
 - Collins function
 - Interference fragmentation function

- Polarized-proton nuclei collision for saturation study
 - Link between CNM and spin physics
 - Transverse single-spin asymmetries in polarized p+A collisions are sensitive to the saturation scale in the nucleus

Summary

- Toward understanding of the extended 3dimensional nucleon structure
- Two milestones with sPHENIX forward upgrade
 - Sign change of the TMD distribution function
 - Polarized Drell-Yan experiment at RHIC and polarized SIDIS experiment at eRHIC
 - From fixed-target experiments to collider experiments
 - Sign mismatch of TMD and higher-twist
 - Distinguish Sivers/higher-twist and Collins/transversity
 - Measurement of jet and direct photon
- Towards electron-proton collisions at eRHIC & ePHENIX
- Understanding of nuclei in quark-gluon picture with pA/eA collisions in addition
 - Understanding of cold nuclear matter
 - Initial state of QGP in high-energy nuclear collisions

Evolution to ePHENIX

 Precision understanding of strongly-coupled QGP by knowing the initial state

Evolution to ePHENIX

• Inclusive DIS

• Gluon and sea-quark helicity distributions

 Scattered electron detection at backward rapidity and midrapidity

Evolution to ePHENIX

- Semi-inclusive DIS
 - Quark and gluon TMD measurements
 - Tag pions and kaons
 - Extract Δs
- Exclusive and diffractive channels
 - DVCS (Deeply Virtual Compton Scattering) and HEMP (Hard Exclusive Meson Production)
 - With a limited luminosity at stage-1 eRHIC
- More discussion to be performed in the ePHENIX Lol session (by Kieran/Jin/Itaru) Friday morning

Requirements for the detector design

- Sivers effect in Drell-Yan process
 - Open heavy-flavor background
 - Vertex detector
 - Light-hadron background
 - For e⁺e⁻ measurement
 - Calorimeter and tracking
 - Additional e/π separation
 - For $\mu^+\mu^-$ measurement?
- Jet asymmetry measurements
 - Calorimeter and tracking
 - Particle-ID
- ePHENIX
 - Scattered electron detection
 - Backward rapidity and midrapidity
 - Particle-ID
 - Midrapidity and forward rapidity
 - Roman-pot detector to tag scattered proton

Timeline

- Forward sPHENIX
 - RHIC physics (polarized p+p / p+A / d+A) not on the table

Summary

- The forward sPHENIX upgrades will give us great opportunities for studying the nucleon spin structure and cold nuclear matter
 - Sivers asymmetry in Drell-Yan process
 - Jet asymmetry measurements
 - Search for gluon saturation
- Detector design and studies are ongoing with physics requirements
 - Detector configuration
 - Magnet discussion
 - Evolution to ePHENIX
- It is important to perform physics not only at eRHIC but also at RHIC with polarized p+p / p+A / d+A