

Takumi Doi (Nishina Center, RIKEN)

2014/01/07

「京」、ポスト「京」と基礎物理 @ 理研和光

Particle Physics

Nuclear Forces

Nuclear Physics

<u>Outline</u>

- Introduction
- Nuclear forces by Lattice QCD simulations
- Lattice results on the eve of the K-computer
- Project on the K-computer
- Summary & Prospects

What does matter consist of ?

Where do we come from ? Where are we going ?

Traditional nuclear physics (DoF=nucleons)

Nuclei

Neutron Stars

Super Novae

Various applications

- <u>Nuclear Forces</u> play crucial roles
 - Yet, no clear connection to QCD so far

QCD (DoF=quarks/gluons)

Formula of QCD: very simple & beautiful

$$\mathcal{L} = -\frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a + \bar{q} \left[\gamma^\mu (i\partial_\mu - gA_\mu) - m \right] q$$
$$G^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f_{abc} A^b_\mu A^c_\nu$$

Only 4 parameters

quark masses (m_u, m_d, m_s) coupling constant $\alpha_s = g^2/4\pi$

mass $(\overline{MS}, \mu = 2 \text{GeV})$	m_u	m_d	m_s
[MeV]	$2.3^{+0.7}_{-0.5}$	$4.8^{+0.5}_{-0.3}$	95 ± 5

- Solving QCD: very challenging
 - Coupling is "strong" at low energy
 - Nonperturbative effects
 - Quantum effects w/ infinite # of DoF

南部陽一郎「クォーク」(1997)

(PDG2013)

Lattice QCD First-principles calculation of QCD

$$Z = \int dU dq d\bar{q} \ e^{-S_E}$$

- Well-defined reguralized system (finite a and L)
- Gauge-invariance manifest
- Fully-Nonperturbative
- DoF ~ 10⁹ → Monte-Carlo w/ Euclid time

Procedure in Lat QCD calc (1) Generate QCD Vacuum (configurations)

(2) "Measurement" on the QCD Vacuum

Status of Lattice QCD

Hadron spectrum well reproduced !

Summary by Kronfeld, arXiv:1203.1204

Fully dynamical (unquenched) QCD simulations at the physical quark mass point already performed PACS-CS Coll., PRD81(2010)074503 BMW Coll., JHEP1108(2011)148

Roadmap: Nuclear Physics and Astrophysics from Lat QCD

- <u>Outline</u>
 - Introduction
 - Nuclear forces by Lattice QCD simulations
 - Lattice results on the eve of the K-computer
 - Project on the K-computer
 - Summary & Prospects

- S. Aoki, K. Murano (YITP)
- N. Ishii, H. Nemura, K. Sasaki, M. Yamada (Univ. of Tsukuba)
- B. Charron (Univ. of Tokyo)
- T. Doi, T. Hatsuda , Y. Ikeda (RIKEN)
- T. Inoue (Nihon Univ.)
- F. Etminan (Univ. of Birjand)

HAL QCD method

Outline

- Introduction
- Nuclear forces by Lattice QCD simulations
- Lattice results on the eve of the K-computer
- Project on the K-computer
- Summary & Prospects

Quark masses are heavy

Nuclear Forces (positive parity)

Hyperon forces : Lattice prediction awaited

Neutron Number

M.Oka et al., NPA464(1987)700

14

Meson-baryon, Y.Ikeda et al., arXiv:1111.2663

Three-nucleon forces (3NF)

✤ B.E. of light nuclei

Saturation point of nuclear matter

Neutron rich nuclei
 Nucleosynthesis

[RIBF-exp @ RIKEN]

3N-forces (3NF) on the lattice

T.D. et al. (HAL QCD Coll.) PTP127(2012)723

+ t-dep method updates etc.

Nf=2 clover (CP-PACS), 1/a=1.27GeV, L=2.5fm, m π =1.1GeV, m_N=2.1GeV

How about Thee-baryon forces w/ Hyperons ?

Outline

- Introduction
- Nuclear forces by Lattice QCD simulations
- Lattice results on the eve of the K-computer
- Project on the K-computer
- Summary & Prospects

Towards realistic potential by the K computer

- Physical mass point, Infinite V limit, continuum limit
 - Physical $m\pi$ crucial for OPEP, chiral extrapolation won't work

– QCD vacuum generation at $m\pi = 140 \text{MeV}$, L=~9fm @ K

Challenge and Breakthrough in S/N issue

• <u>S/N issue</u>

N.Ishii et al. (HAL QCD Coll.) PLB712(2012)437

- <u>S/N gets worse</u> for larger mass number A & light quark mass & $t \rightarrow \infty$

 $S/N \sim \exp[-\mathbf{A} \times (\mathbf{m_N} - \mathbf{3}/\mathbf{2m_\pi}) \times \mathbf{t}]$

Larger V \rightarrow larger spectral density \rightarrow larger t

Our solution: time-dependent HAL method

Extract the signal from excited states *E-indep of potential* $U(r,r') \Rightarrow (excited)$ scatt states share the same U(r,r')*They are not contaminations, but signals*

- Schrodinger eq: time-independent \rightarrow time-dependent
- Ground state saturation is NOT necessary !

Recent Breakthrough in Algorithm

- Enormous computational cost
 - Because of Wick contractions (permutation) x color/spinor contractions $\sim [(\frac{3}{2}A)!]^2 \, \mathrm{X} \, \sim 6^A \cdot 4^A$
 - [Unified contraction algorithm]
 - Consider both contractions in a unified index space
 - → huge redundancies can be eliminated systematically
 - Significant improvement

 $\times 192$ for ${}^{3}\mathrm{H}/{}^{3}\mathrm{He}$, $\times 20736$ for ${}^{4}\mathrm{He}$, $\times 10^{11}$ for ${}^{8}\mathrm{Be}$ (x add'l. speedup)

See also subsequent works:

Detmold et al., PRD87(2013)114512 Gunther et al., PRD87(2013)094513

(color) (spinor)

TD, M.Endres, CPC184(2013)117

• Software development in K-computer

- Extensive refactoring of the code with various tuning
- 2BF: ~ x10-x100
- 3NF: ~ x1000

speedup

Prospects: challenges in post-K era

- Physical mass point, Infinite V limit, continuum limit
 - (how much precision can we achieve for deuteron B.E. ?)
- Three-body forces (3BF)
 - Generalized 3BF w/ Hyperons
 - Spacial config-dep, spin/flavor-dep
- Physical quantities other than phase shift & B.E.
 - e.g., matrix elements
- Chiral fermion in Lat QCD
 - ←→ Wilson fermion on "K" does not respect chiral-sym
- (Finite density on Lattice)
 - Sign problem

- Nuclear (Baryon) Forces by 1st principle Lat calc
 - Bridging different worlds:
 Particle Physics / Nuclear Physics / Astrophysics
- Lattice QCD results for NN, YN/YY, NNN, etc.
 Intriguing physics even at heavy quark masses
- Toward physical quark mass point:
 - Breakthroughs in S/N issue & Comput. cost issue

Gauge confs in generation at $m\pi = 140 \text{MeV}$, L=9fm

→ Nuclear Physics on the Lattice !