Spectroscopy of *p*-wave neutron halo nuclei via neutron removal reactions

N. Kobayashi JSPS Postdoctoral Research Fellow Sakurai lab., University of Tokyo

Collaborators

N. Kobayashi, T. Nakamura, Y. Kondo, J.A. Tostevin, N. Aoi, H. Baba, S. Deguchi, N. Fukuda, J. Gibelin, G. S. Lee, H. S. Lee, N. Inabe, M. Ishihara, Y. Kawada, K. Rituparna, T. Kubo, F. Michael, M. Matsushita, T. Motobayashi, T. Onishi, N. A. Orr, H. Otsu, R. Barthelemy, H. Sakurai, E. C. Simpson, S. Kim,
T. Sako, T. Sumikama, Y. Satou, K. Takahashi, H. Takeda, M. Takechi, S. Takeuchi, R. Tanaka, N. Tanaka, Y. Togano, K. Yoneda

Outline

Introduction

Motivation Halo nuclei Coulomb breakup reaction Momentum distribution dσ/dP_{//}

• Experimental setup

Targets & detectors

Results

Inclusive breakup cross sections Focus on ³¹Ne & ³⁷Mg

Summary

Motivation

Characteristic features of Halo Nuclei (I)

Large radius

Spatially extended wave function of a valence neutron → Large reaction cross section

Characteristic features of Halo Nuclei (2)

Large E1 (Electric dipole) strength

(The r.m.s. radius diverges only for s- and p-wave at $S_n = 0 MeV$)

Coulomb breakup -- Method to extract E1 strength

Inclusive $\sigma_{-1n}(E1)$ of halo nuclei

P_{//} distribution for nuclear breakup

-- Method to extract the valence neutron orbital ℓ

RI Beam Factory @ RIKEN

Experimental setup

Large $\sigma(E1)$ of ²²C, ³¹Ne, and ³⁷Mg \rightarrow halo structure

²²C total reaction cross section : K. Tanaka et al. PRL104(2010)062701
 ³¹Ne total reaction cross section : M. Takechi et al. PLB707(2012)357

Partial cross sections ${}^{31}Ne \rightarrow {}^{30}Ne(0^{+}_{g.s.})$

Inclusive $\sigma_{-1n}(E1) = ()$ mb $\sigma_{-1n}(E1; 2^+, 4^+, \text{ etc.}) = ()$ mb $\rightarrow \sigma_{-1n}(E1; 0^+_{g.s.}) = ()$ mb

$$0^{+}_{g.s.}$$
 / Inclusive = 85%

Inclusive $\sigma_{-1n}(C) = ()$ mb $\sigma_{-1n}(C; 2^+, 4^+, \text{ etc.}) = ()$ mb $\rightarrow \sigma_{-1n}(C; 0^+_{g.s.}) = ()$ mb

$$D_{g.s.}^+$$
 / Inclusive = 37%

 $\begin{array}{l} |^{30}\text{Ne}(0^+_{g.s.})\otimes\phi_{nlj}\rangle \text{ in }{}^{31}\text{Ne}_{g.s.}\\ \text{Only one s. p. oribital can}\\ \text{couple to }{}^{30}\text{Ne}(0^+_{g.s.})\\ \text{theo. & exp. }{}\sigma_{-1n}(0^+_{g.s.})\\ \rightarrow C^2\text{S of s. p. orbital and }S_n \end{array}$

Combined analysis -- Estimation of C²S & S_{1n} of ³¹Ne S_{1n} (³¹Ne)=-0.06(0.42) MeV

Channel: ${}^{31}Ne(3/2^{-}) \rightarrow {}^{30}Ne(0^{+}_{g.s.}) + 2p_{3/2}$

All possible configurations

Inclusive momentum distribution of ³⁰Ne fragment (C target)

³¹Ne_{g.s.}(3/2⁻) is supported

Inclusive momentum distribution of ³⁰Ne fragment (C target)

³¹Ne_{g.s.}(1/2⁺) is rejected
³¹Ne_{g.s.}
$$\rightarrow J^{\pi} = 3/2^{-1}$$

Deformation of ³¹Ne(3/2⁻)

Nilsson diagram : single particle levels in deformed nucleus

 $0.16 < \beta < 0.30$ or $0.40 < \beta < 0.58$

Prolate deformation of ${}^{31}Ne(3/2)$ Mixing of p and f orbitalsN = 20, 28 shell closerp-wave neutron haloI. Hamamoto, PRC76(2007)054319.

All possible configurations (³⁷Mg)

Inclusive momentum distribution of ³⁶Mg fragment (C target)

Populating excited states

Prolate deformation in ³⁷Mg(**3/2**⁻)

N = 28 shell closer **Deformed** *p*-wave halo

Thank you.

^{37}Mg , N = 25, SDPF-M

FIG. 4: (color online). Percentage compositions of $0\hbar\omega$ (black circles), $2\hbar\omega$ (red squares), and $4\hbar\omega$ (blue diamonds) configurations in the ground states of the Mg isotopes from large-scale shell-model calculations with the SDPF-M effective interaction [35].

Motivation

Spectroscopic factor (C²S) & S_n can be extracted

N. Kobayashi et al., PRC86(2012)054604.

Calculation of the cross section for ³¹Ne

Simple direct breakup mechanism

$$\sigma(E1) = \int_{E_{th}}^{\infty} \frac{16\pi^3}{9\hbar c} N_{E1}(E_x) \frac{dB(E1)}{dE_x} dE_x$$

$$\frac{dB(E1)}{dE_x} = \left| \left\langle \mathbf{q} \left| \frac{Ze}{A} r Y_1^m \right| \Phi_{gs} \right\rangle \right|^2$$
$$= \left| \boldsymbol{\Sigma} \mathbf{C}^2 \mathbf{S} \left| \left\langle \Phi_f \left| \frac{Ze}{A} r Y_1^m \right| \boldsymbol{\varphi}_{nlj} \right\rangle \right|^2$$

Introduction E1 strength of one neutron halo (¹¹Be)

Introduction E1 strength of two neutron halo (¹¹Li)

Calculation of Gamma factor

(basically, ratio of radius of lead nucleus to that of carbon nucleus)

$$R \propto A^{1/3}$$

$$R(Pb) : \text{ radius of lead nucleus}$$

$$\Gamma_{\text{max}} = \frac{R(Pb)}{R(C)} = 2.6$$

$$\Gamma_{\text{min}} = \frac{R(Pb) + R(^{37}Mg)}{R(C) + R(^{37}Mg)} = 1.7$$

$$\Gamma = \frac{\Gamma_{\text{max}} + \Gamma_{\text{min}}}{2} = \frac{2.6 + 1.7}{2} = 2.2$$

Extraction of one-neutron removal cross sections σ_{-1n}

Previous thesis

 σ_R : experimental values by this experiment (large systematic & statistical errors)

This thesis

 σ_{R} of Ne isotopes: M. Takechi et al., PLB707(2012)357.

 σ_R of C, Mg, Si isotopes: eikonal model and Skyrme Hartree-Fock calculations.

10% deviation of $\sigma_R \rightarrow 1\%$ deviation of σ_{-1n}

Change of $\sigma_{-1n} < 3\%$