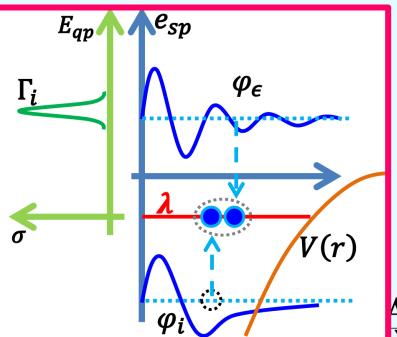
Quasi-particle resonance near threshold in neutron drip-line nuclei

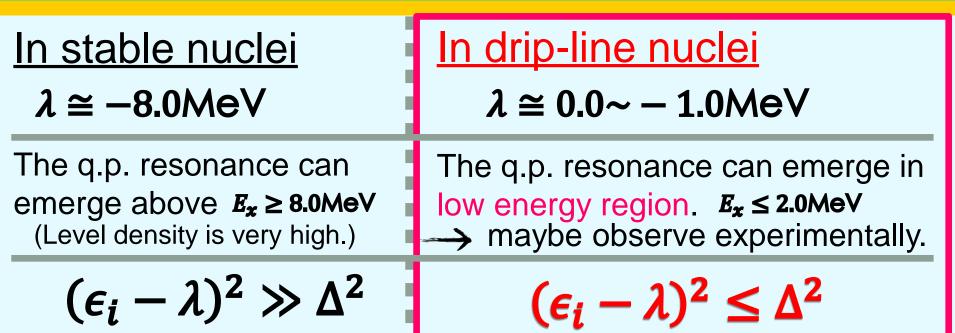
<u>Yoshihiko Kobayashi</u> Masayuki Matsuo (Niigata University)

Contents

- Introduction and motivation
- •HFB equation with scattering boundary condition
- Results (elastic cross section, resonance width, etc)
 Conclusion


Resonance caused by pairing

- Quasi-particle resonance is predicted to emerge in superfluid nuclei.
 S. T. Belyaev et al., Sov. J. Nucl. Phys, 45 783 (1987) A. Bulgac, Preprint(1980); nucl-th/9907088
 - J. Dobaczewski et al., Phys. Rev. C 53 2809 (1996)


• In Hartree-Fock-Bogoliubov (HFB) theory, an unbound nucleon can couple to a hole state by creating a Cooper pair, and resulting in a quasi-particle resonance. $E_{qp} \wedge e_{sp}$

Single-particle orbit	Quasi-particle resonance emerge
Deep-hole orbit in stable nuclei	in high energy region
Weakly bound orbit in drip-line nuclei	in low energy region

We expect novel property in weakly bound system.

$$\Gamma_l = 2\pi \left| \int d^3 r \varphi_l(\vec{r}) \Delta(\vec{r}) \varphi_{\epsilon}(\vec{r}) \right| \propto |\Delta|^2$$

S. T. Belyaev et al., Sov. J. Nucl. Phys, 45 783 (1987) A. Bulgac, Preprint(1980); nucl-th/9907088 J. Dobaczewski et al., Phys. Rev. C 53 2809 (1996)

 $\Delta \nearrow \Gamma_i \nearrow$

Pairing influence weakly bound orbit and low-lying resonance strongly. Resonance width <u>The perturbative equation</u> <u>may not be applied.</u>

We focus on low-lying p- and s- resonance.

		SC 30 0.0132s	SC 5/ 0.0326s	SC 38 0.0513s	SC 39 0.121s	SC 40 0.1823s	SC 41 0.5963s	SC 42 1.033m	SC 45 3.891h	SC 44 2.442d	SC 45 100	SC 40 83.79d	SC 4/ 3.349d	SC 48 1.82d	SC 49 57.18m	SC 50 1.708m	SC 51 12.4s	SC 52 8.2s	SC 53 3s	SC 54 0.292s
	Ca 34 0.0108s	Ca 35 0.05s	Ca 36 0.1s	Ca 37 0.175s	Ca 38 0.44s	Ca 39 0.8596s	Ca 40 96.941	Ca 41 1.02e+05y	Ca 42	Ca 43 0.135	Ca 44 2.086	Ca 45 162.6d	Ca 46 0.004	Ca 47 4.536d	Ca 48 0.187	Ca 49 8.718m	Ca 50 13.9s	Ca 51 10s	Ca 52 4.6s	Ca 53 0.09s
	K 33	K 34	K 35	K 36	K 37	K 38	K 39	K 40	K 41	K 42	K 43	K 44	K 45	K 46	K 47	K 48	K 49	K 50	K 51	K 52
Ar 31	0.0386s Ar 32	0.0702s Ar 33	0.19s Ar 34	0.342s Ar 35	1.226s Ar 36	7.636m Ar 37	93.2581 Ar 38	0.0117 Ar 39	6.7302 Ar 40	12.36h Ar 41	22.3h Ar 42	22.13m Ar 43	17.81m Ar 44	1.75m Ar 45	17.5s Ar 46	6.8s Ar 47	1.26s Ar 48	0.472s Ar 49	0.365s Ar 50	0.105s Ar 51
0.015s Cl 30	0.098s Cl 31	0.173s Cl 32	0.8445s Cl 33	1.775s Cl 34	0.3365	35.04d Cl 36	0.0632 Cl 37	269y Cl 38	99.6003 Cl 39	1.827h Cl 40	32.9y Cl 41	5.37m Cl 42	11.87m Cl 43	21.48s Cl 44	8.4s Cl 45	1.23s Cl 46	0.475s	0.17s	0.085s	0.0141s Cl 50
0.0415s	0.15s	0.298s	2.511s	32m	75.78	3.01e+05y	24.22	37.23m	55.6m	1.35m	38.4s	6.9s	3.07s	0.56s	0.4s	0.223	0.101s	0.0175s	0.0103s	.00644
S 29 0.187s	S 30 1.178s	S 31 2.572s	S 32 94.93	S 33 0.76	S 34 4.29	S 35 87.51d	S 36 0.02	S 37 5.05m	S 38 2.838h	S 39 11.5s	S 40 8.8s	S 41 1.99s	S 42 1.013 s	S 43 0.22s	S 44 0.1s	S 45 0.068s	S 46 0.05s	S 47 0.0109s	S 48 0.00632s	
P 28 0.2703 s	P 29	P 30	P 31 100	P 32 14.26d	P 33	P 34	P 35	P 36	P 37	P 38 0.64s	P 39	P 40 0.153 s	P 41	P 42	P 43	P 44	P 45 0.0061s	P 46 0.00472s	P 47	
Si 27	4.142s Si 28	2.498m Si 29	Si 30	Si 31	25.34d Si 32	12.43 s Si 33	47.3s Si 34	5.6s Si 35	2.31s Si 36	Si 37	0.28s Si 38	Si 39	0.15s Si 40	0.11s Si 41	0.033s Si 42	Si 43	Si 44	0.004728	0.00305s Si 46	
4.16s Al 26	92.2297 Al 27	4.6832 Al 28	3.0872 Al 29	2.622h Al 30	153y Al 31	6.18s Al 32	2.77s Al 33	0.78s Al 34	0.45s Al 35	0.09s Al 36	0.102s Al 37	0.0475s Al 38	0.033s Al 39	0.02s Al 40	0.0125s Al 41		0.00352s		0.00195s	
7.17e+05y	100	2.241m	6.56m	3.6s	0.644s	0.033s	0.0417s	0.0563 s	0.15s	0.09s	0.0107s	0.0076s	0.0076s	0.00374s	0.0022s		0.000989s			
Mg 25	Mg 26 11.01	Mg 27 9.458m	Mg 28 20.92h	Mg 29 1.3s	Mg 30 0.335s	Mg 31 0.23s	Mg 32 0.086s	Mg 33 0.0905s	Mg 34 0.02s	Mg 35 0.07s	Mg 36 0.0039s	Mg 37 0.00483s	Mg 38 0.00259s	Mg 39 0.00197s	Mg 40 0.00122s		W	eal	dv	
Na 24	Na 25	Na 26	Na 27	Na 28	Na 29	Na 30	Na 31	Na 32	Na 33	Na 34	Na 35		Na 37			1		Jui	•• У	
15h Ne 23	59.1s Ne 24	1.077s Ne 25	0.301s Ne 26	0.0305s Ne 27	0.0449s Ne 28	0.048s Ne 29	0.017s Ne 30	0.0132s Ne 31	0.008s Ne 32	0.0055s	0.0015s Ne 34	1	0.00132s	1			h	our	h	
37.24s F 22	3.38m F 23	0.602s	0.197s	0.032s	0.019s F 27	0.0148s	0.0073s F 29	0.0034s	0.0035s F 31		0.0017s]						Jul	IU	
4.23s	2.2 s	0.39s	0.05s	0.00965	0.0052s		F 29 0.0024s		F 51 0.00156s]							20	~ •	h:+	
O 21 3.42s	O 22 2. s	O 23 0.097s	O 24 0.061s		O 26 0.00535s							7					Z P	- Ur	bit	
N 20	N 🔒 1	N 22	N 23		L		vh	0.10	bd				1				-			
0.13s C 19	0.095s C 20	0.024s	0.0141s C 22			eakl											nis	5 SI	tud	V)
0.049s	0.0 - s B	ļ	0.0061s							WO	$r \lambda$. NI		-			• •
5	0.00292s				23		<u>, ir (</u> 1	uu	uie	vvU	17)					WW	N Chart	of the N	uclides 2	2010
Low-angular momentum																				
			-															7 0	D.	
V	v a\		nla	v a	n i	mn	ort	an	t rc)e			0				1	C.	10	
		-	-	-		-							68	0			6			1
i	n w	102	kh	1 h	nir	nd r		ial				0		0						
in weakly bound nuclei.													TA							
	\						4													

UNIVERSITY

Ex.) halo, capture etc...

How the width is governed by the pairing ?

 Previous works of the quasi-particle resonance in drip-line nuclei.
 M. Grasso et al., Phys. Rev. C 64 064321 (2001)
 Hamamoto et al. Phys. Rev. C 68 034312 (2001)

I. Hamamoto et al., Phys. Rev. C 68 034312 (2003) J. C. Pei et al., Phys. Rev. C 84 024311 (2011)

UNIVERSITY

Our study:
✓ How the resonance width is governed by the pairing in neutron drip-line nuclei.
✓ What is different point from the resonance associate with deep-hole state.

•We consider,

a neutron drip-line nucleus + one neutron with the HFB theory in the coordinate space (cHFB).

J. Dobaczewski et al., Nucl. Phys. A 422 103 (1984)

The cHFB equation for resonance

Pairing effects describe as pair potential in cHFB.

р

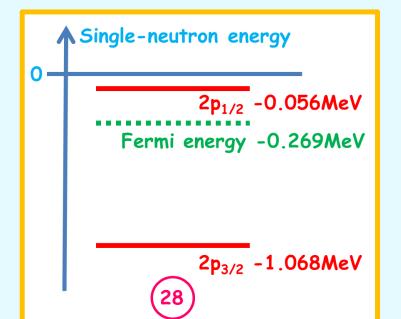
The HFB equation in the coordinate space

$$\begin{pmatrix} -\frac{\hbar^2}{2m}\frac{d^2}{dr^2} + U_{lj}(r) - \lambda & \Delta(r) \\ \Delta(r) & \frac{\hbar^2}{2m}\frac{d^2}{dr^2} - U_{lj}(r) + \lambda \end{pmatrix} \begin{pmatrix} u_{lj}(r) \\ v_{lj}(r) \end{pmatrix} = E \begin{pmatrix} u_{lj}(r) \\ v_{lj}(r) \end{pmatrix} \quad \psi(\vec{r},\sigma) = \frac{1}{r} \begin{pmatrix} u_{lj}(r) \\ v_{lj}(r) \end{pmatrix} \begin{bmatrix} Y_l(\theta,\phi)\chi_{\frac{1}{2}}(s_z) \\ y_{lj}(r) \end{bmatrix}_{jm} \\ J. \text{ Dobaczewski et al., Nucl. Phys. A 422 103 (1984)}$$

Scattering boundary condition of quasi-particle

$$\begin{pmatrix} u_{lj}(r) \\ v_{lj}(r) \end{pmatrix} \xrightarrow{r \gg R} \begin{pmatrix} \cos \delta_{lj} j_l(k_1 r) - \sin \delta_{lj} n_l(k_1 r) \\ D h_l^{(1)}(i \kappa_2 r) \end{pmatrix} \qquad k_1 = \sqrt{\frac{2m(\lambda + E)}{\hbar^2}}, \qquad \kappa_2 = \sqrt{-\frac{2m(\lambda - E)}{\hbar^2}}$$

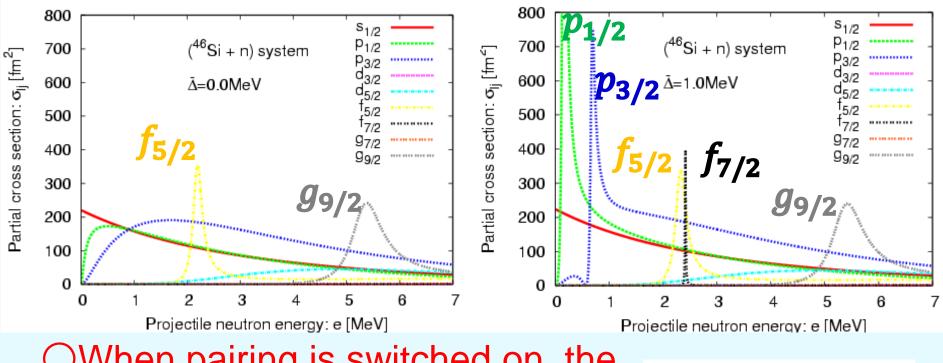
phase shift elastic cross section S. T. Belyaev et al., Sov. J. Nucl. Phys, 45 783 (1987) M. Grasso et al., Phys. Rev. C 64 064321 (2001) I. Hamamoto et al., Phys. Rev. C 68 034312 (2003)


р

Pair Potential

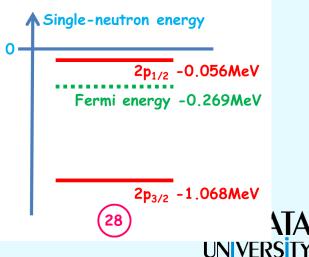
UN VERS T

Numerical analysis with (⁴⁶Si + n)

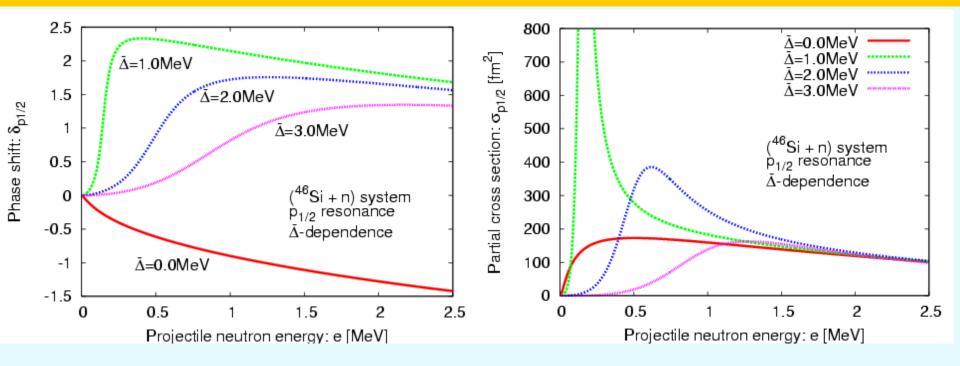


 ✓ drip-line nucleus for Si isotopes.
 ✓ deformation is small.
 Ex) M. V. Stoitsov et al. PRC68. 054312 (2003)
 ← Energy levels of ⁴⁶Si (with Woods-Saxon potential)
 • Weakly bound 2p orbits

Fermi energy -0.269MeV


 $\frac{\bigstar \text{Nuclear potential \& pair potential = Woods-Saxon type}}{U_{lj}(r) = \left[V_0 + (\vec{l} \cdot \vec{s})V_{S0}\frac{r_0^2}{r}\frac{d}{dr}\right]f_{WS}(r)}$ The averaged strength of the pair field $\Delta(r) = \Delta_0 f_{WS}(r)$ $\overline{\Delta} = \frac{\int d\vec{r}r^2 \Delta(r)f_{WS}(r)}{\int d\vec{r}r^2 f_{WS}(r)}$ I. Hamamoto, B. R. Mottelson, Phys, Rev. C 68 034312 (2003)

Elastic cross section



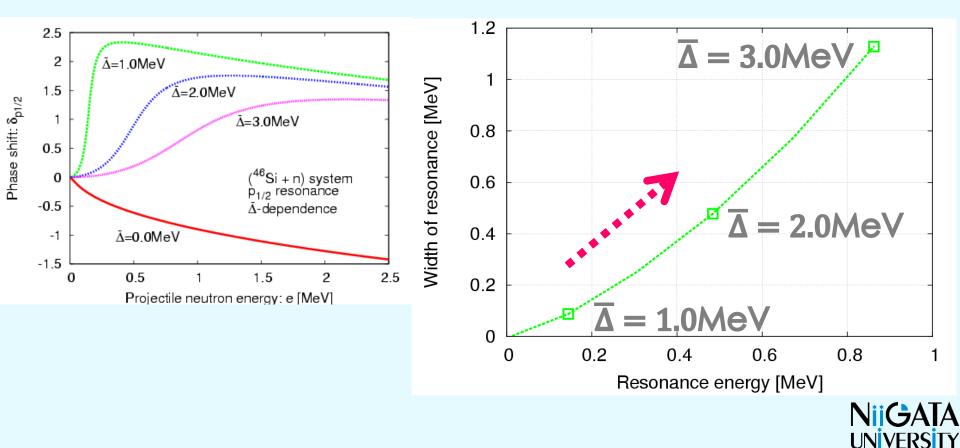
Owhen pairing is switched on, the $2p_{1/2}$ ($2p_{3/2}$) orbits emerges as a resonance

→ weakly bound orbits emerge as resonances by the pairing effect

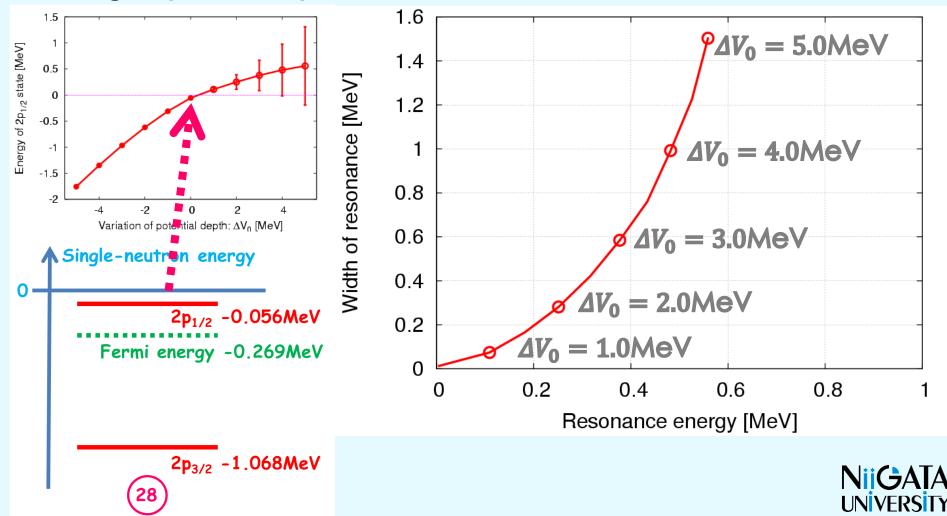
We focus on $p_{1/2}$ resonance

• The strength of pairing. $\overline{\Delta} = 0.0 \sim 3.0 \text{MeV}$ Cf. the empirical value for ⁴⁶Si

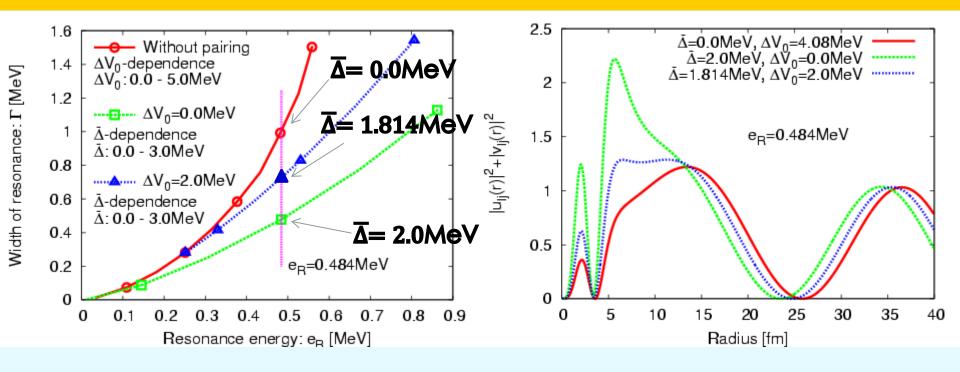
$$\Delta = \frac{12.0}{\sqrt{A}} \text{ MeV} = \frac{12.0}{\sqrt{46}} \cong 1.7 \text{ MeV}$$


Resonance energy and width depend on strength of the pairing

We extract the resonance width and energy


 We calculate the width and energy from phase shifts using fitting method.

$$\delta(e) = \arctan\left(\frac{2(e-e_R)}{\Gamma}\right) + a(e-e_R) + b$$



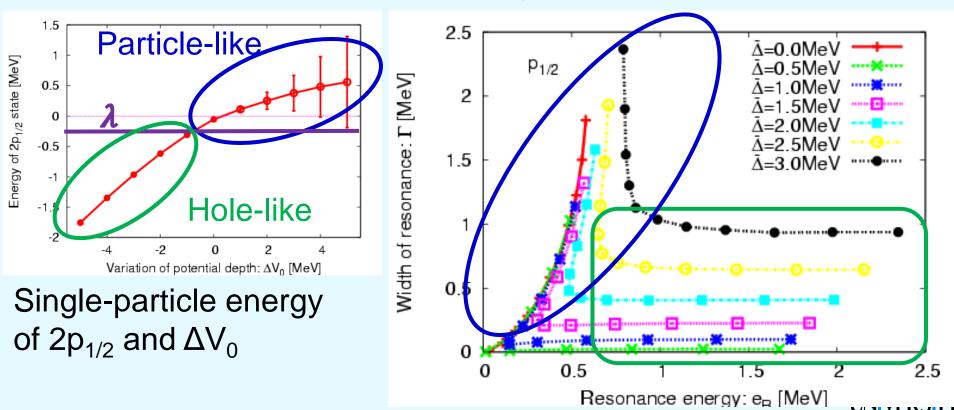
We also consider single-particle resonance

 We also calculate the width and energy for p_{1/2} single-particle potential resonance.

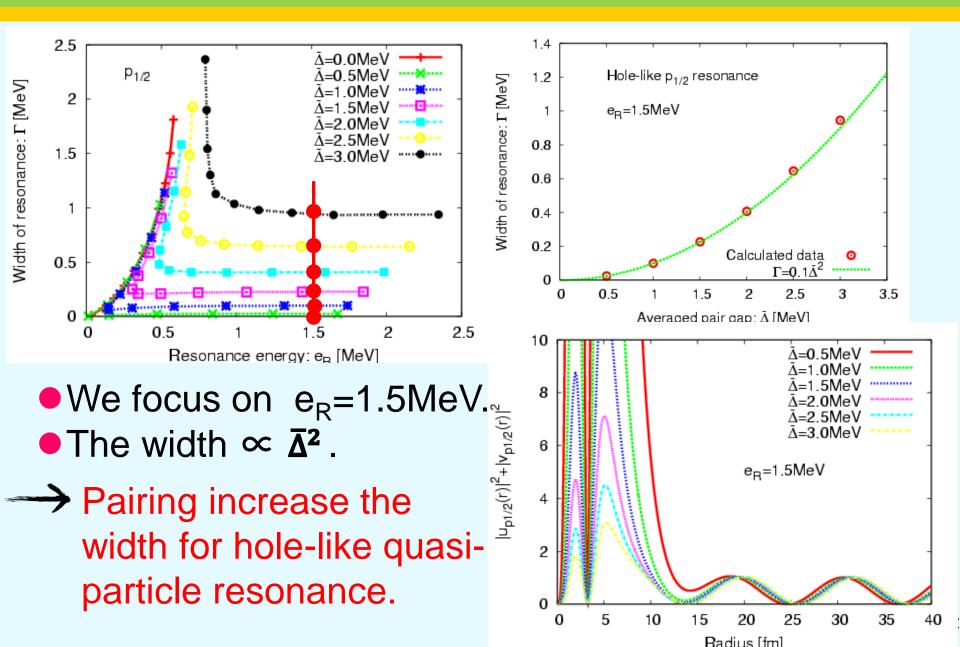
q.p. resonance vs s.p. resonance

If we compare these results at the same resonance energy, we found that the width of quasi-particle resonance is narrower than the width of singleparticle potential resonance.

UNIVERSITY

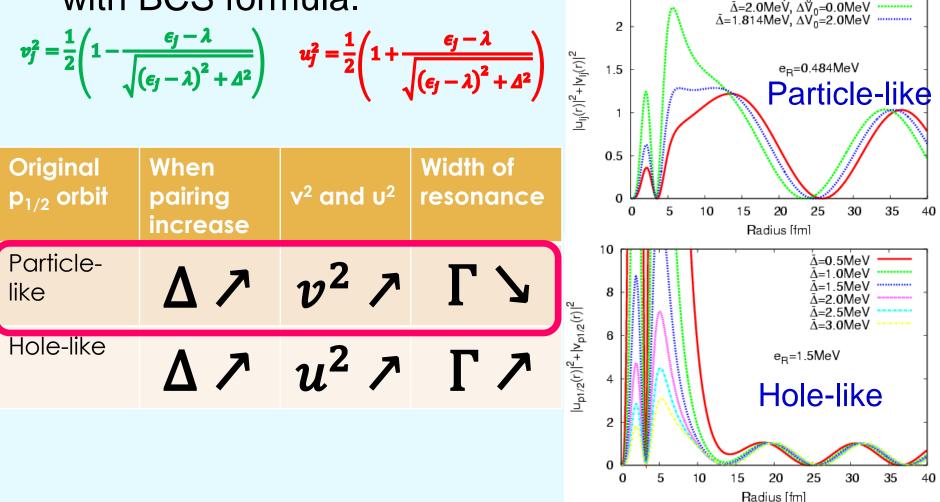

Pairing decrease the resonance width.

The width with various condition

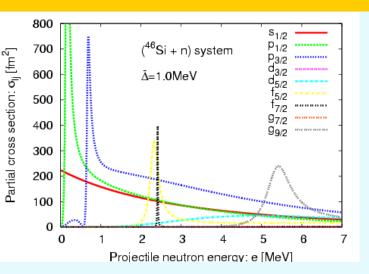

We change

- the strength of pairing $\overline{\Delta} = 0.0 \sim 3.0 \text{MeV}$
- the depth of nuclear potential $\Delta V_0 = -6.0 \sim 4.0 \text{MeV}$

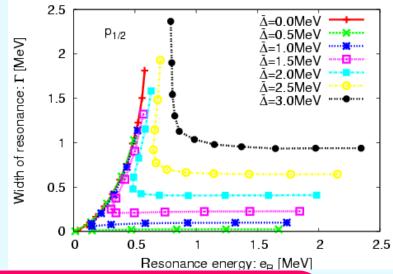
✓ We fix the Fermi energy (=-0.269MeV)



The width of hole-like quasi-particle resonance



Particle-like vs hole-like


We analyze the different point between particle-like q.p. resonance & hole-like q.p. resonance with BCS formula.

Conclusion

 Weakly bound orbits emerge as low-lying quasi-particle resonances when pairing is switched on in drip-line nuclei.

 The width of quasi-particle resonance is influenced by the pairing.

The pairing effect on the width of quasi-particle resonance

For particle-like : <u>decrease the width</u>

For hole-like : increase the width