ICNT workshop, June 2014, RIKEN, Wako, Japan

No-Core CI calculations of *p*-shell nuclei with 2- and 3-body forces

Pieter Maris pmaris@iastate.edu lowa State University

SciDAC project – NUCLEI lead PI: Joe Carlson (LANL) http://computingnuclei.org

PetaApps award lead PI: Jerry Draayer (LSU)

INCITE award – Computational Nuclear Structure lead PI: James P Vary (ISU)

NERSC

NUclear Computational Low-Energy Initiative

computingnuclei.org (adapted by Gaute Hagen)

Ab initio nuclear physics – Quantum many-body problem

Given a Hamiltonian operator

$$\hat{\mathbf{H}} = \sum_{i < j} \frac{(\vec{p}_i - \vec{p}_j)^2}{2 \, m \, A} + \sum_{i < j} V_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

solve the eigenvalue problem for wave function of A nucleons

$$\mathbf{\hat{H}} \Psi(r_1, \dots, r_A) = \lambda \Psi(r_1, \dots, r_A)$$

 \checkmark eigenvalues λ discrete (quantized) energy levels

• eigenvectors: $|\Psi(r_1, \ldots, r_A)|^2$ probability density for finding nucleons 1, ..., A at r_1, \ldots, r_A

Carbon 12 Proton Densities

Ab initio nuclear physics – Computational challenges

- Self-bound quantum many-body problem, with 3A degrees of freedom in coordinate (or momentum) space
- Not only 2-body interactions, but also intrinsic 3-body interactions and possibly 4- and higher N-body interactions
- Strong interactions, with both short-range and long-range pieces
- Uncertainty quantification for calculations needed
 - for comparisons with experiments
 - for comparisons between different methods
- Sources of numerical uncertainty
 - statistical and round-off errors
 - systematical errors inherent to the calculational method
 - CI methods: finite basis space
 - Monte Carlo methods: sensitivity to the trial wave function
 - Lattice calculations: finite volume and lattice spacing
 - uncertainty of the nuclear potential

No-Core Configuration Interaction calculations

Barrett, Navrátil, Vary, Ab initio no-core shell model, PPNP69, 131 (2013)

- Expand wave function in basis states $|\Psi\rangle = \sum a_i |\Phi_i\rangle$
- Express Hamiltonian in basis $\langle \Phi_j | \mathbf{\hat{H}} | \Phi_i \rangle = H_{ij}$
- Diagonalize Hamiltonian matrix H_{ij}
- No-Core Configuration Interaction
 - all A nucleons are treated the same
- - caveat: complete basis is infinite dimensional
- In practice
 - truncate basis
 - study behavior of observables as function of truncation
- Computational challenge
 - construct large ($10^{10} \times 10^{10}$) sparse symmetric real matrix H_{ij}
 - use Lanczos algorithm to obtain lowest eigenvalues & -vectors

NCCI – Basis space expansion

- Expand wave function in basis $\Psi(r_1, \ldots, r_A) = \sum a_i \Phi_i(r_1, \ldots, r_A)$
- Many-Body basis states $\Phi_i(r_1, \ldots, r_A)$ Slater Determinants of Single-Particle states $\phi_{ik}(r_k)$

$$\Phi_{i}(r_{1},...,r_{A}) = \frac{1}{\sqrt{A!}} \begin{vmatrix} \phi_{i1}(r_{1}) & \phi_{i2}(r_{1}) & \dots & \phi_{iA}(r_{1}) \\ \phi_{i1}(r_{2}) & \phi_{i2}(r_{2}) & \dots & \phi_{iA}(r_{2}) \\ \vdots & \vdots & & \vdots \\ \phi_{i1}(r_{A}) & \phi_{i2}(r_{A}) & \dots & \phi_{iA}(r_{A}) \end{vmatrix}$$

- Single-Particle basis states $\phi_{ik}(r_k)$
 - eigenstates of SU(2) operators $\hat{\mathbf{L}}^2$, $\hat{\mathbf{S}}^2$, $\hat{\mathbf{J}}^2 = (\hat{\mathbf{L}} + \hat{\mathbf{S}})^2$, and $\hat{\mathbf{J}}_z$ with quantum numbers n, l, s, j, m
 - radial wavefunctions
 - Harmonic Oscillator
 - Wood–Saxon basis
 - Coulomb–Sturmian

<u>_</u>...

Negoita, PhD thesis 2010

Caprio, Maris, Vary, PRC86, 034312 (2012)

NCCI – Truncation schemes

M-scheme: Many-Body basis states eigenstates of $\hat{\mathbf{J}}_{\mathbf{z}}$

$$\hat{\mathbf{J}}_{\mathbf{z}}|\Phi_i\rangle = M|\Phi_i\rangle = \sum_{k=1}^A m_{ik}|\Phi_i\rangle$$

- single run gives entire spectrum
- alternatives:
 Coupled-J scheme, Symplectic basis, ...
- - exact factorization of Center-of-Mass motion
- alternatives:
 - Importance Truncation

- Roth, PRC79, 064324 (2009)
- No-Core Monte-Carlo Shell Model Abe et al, PRC86, 054301 (2012)
- SU(3) Truncation
- **.**..

Dytrych et al, PRL111, 252501 (2013)

Intermezzo: Center-of-Mass excitations

- Use single-particle coordinates, not relative (Jacobi) coordinates
 - straightforward to extend to many particles
 - have to separate Center-of-Mass motion from relative motion
- Center-of-Mass wave function factorizes for H.O. basis functions in combination with N_{max} truncation

$$\begin{aligned} |\Psi_{\mathsf{total}}\rangle &= |\phi_1\rangle \otimes \ldots \otimes |\phi_A\rangle \\ &= |\Phi_{\mathsf{Center-of-Mass}}\rangle \otimes |\Psi_{\mathsf{rel}}\rangle \end{aligned}$$

where

$$\mathbf{\hat{H}}_{\mathsf{rel}} | \Psi_{\mathsf{j, rel}} \rangle = E_{\mathsf{j}} | \Psi_{\mathsf{j, rel}} \rangle$$

Add Lagrange multiplier to Hamiltonian (Lawson term)

$$\hat{\mathbf{H}}_{\mathsf{rel}} \longrightarrow \hat{\mathbf{H}}_{\mathsf{rel}} + \Lambda_{CM} \left(\hat{\mathbf{H}}_{CM}^{H.O.} - \frac{3}{2} \left(\sum_{i} m_{i} \right) \omega \right)$$

with $\hat{\mathbf{H}}_{rel} = \hat{\mathbf{T}}_{rel} + \hat{\mathbf{V}}_{rel}$ the relative Hamiltonian separates CM excitations from CM ground state $|\Phi_{CM}\rangle$

Intermezzo: FCI vs. Nmax truncation

Nmax truncation

- exact factorization of Center-of-Mass motion
- Infinite basis space limit: No-Core Full Configuration (NCFC)
 - both N_{max} truncation and FCI converge to the same results
 - N_{max} truncation does so much more rapidly

Configuration Interaction methods

- Expand wave function in basis states $|\Psi\rangle = \sum a_i |\psi_i\rangle$
- Express Hamiltonian in basis $\langle \psi_j | \mathbf{\hat{H}} | \psi_i \rangle = H_{ij}$
- Diagonalize Hamiltonian matrix H_{ij}
- Variational: for any finite truncation of the basis space, eigenvalue is an upper bound for the ground state energy
- Smooth approach to asymptotic value with increasing basis space: No-Core Full Configuration calculation
- Convergence: independence of N_{max} and H.O. basis $\hbar\omega$
 - different methods (NCFC, CC, GFMC, ...) using the same interaction should give same results within (statistical plus systematic) numerical uncertainties

Challenge: achieve numerical convergence for No-Core Full Configuation calculations using finite model space calculations

- Perform a series of calculations with increasing N_{max} truncation
- Extrapolate to infinite model space \longrightarrow exact results
 - Empirical: binding energy exponential in Nmax

 $E_{\text{binding}}^{N} = E_{\text{binding}}^{\infty} + a_1 \exp(-a_2 N_{\text{max}})$

- use 3 or 4 consecutive N_{max} values to determine $E_{\text{binding}}^{\infty}$
- use $\hbar \omega$ and N_{max} dependence to estimate numerical error bars

Maris, Shirokov, Vary, PRC79, 014308 (2009)

Recent studies of IR and UV behavior: exponentials in $\sqrt{\hbar\omega/N}$ and $\sqrt{\hbar\omega N}$ Coon *et al*, PRC86, 054002 (2012); Furnstahl, Hagen, Papenbrock, PRC86, 031301(R) (2012); More, Ekstrom, Furnstahl, Hagen, Papenbrock, PRC87, 044326 (2013)

Extrapolating to complete basis – in practice

- Perform a series of calculations with increasing N_{max} truncation
- **J** Use empirical exponential in N_{max} :

• H.O. basis up to $N_{max} = 16$: $E_b = -31.49(3) \text{ MeV}$

Cockrell, Maris, Vary, PRC86, 034325 (2012)

Hyperspherical harmonics up to $K_{max} = 14$: $E_b = -31.46(5)$ MeV
Vaintraub, Barnea, Gazit, PRC79, 065501 (2009)

NCCI calculations – main challenge

- Increase of basis space dimension with increasing A and N_{max}
 - need calculations up to at least $N_{max} = 8$ for meaningful extrapolation and numerical error estimates
- More relevant measure for computational needs
 - number of nonzero matrix elements
 - current limit 10^{13} to 10^{14} (Edison, Mira, Titan)

Many Fermion Dynamics – nuclear physics

Efficient Configuration Interaction code for nuclear physics as a result of collaboration with applied mathematicians and computer scientists

- Platform-independent, hybrid OpenMP/MPI, Fortran 90
- Generate many-body basis space subject to user-defined truncation and symmetry constraints

Solution Construct many-body matrix H_{ij}

- determine which matrix elements can be nonzero based on quantum numbers of underlying single-particle states
- evaluate and store nonzero matrix elements in compressed row/column format
- Obtain lowest eigenpairs using Lanczos algorithm
 - typical use: 10 to 20 lowest eigenvalues and eigenvectors
 - typically need \sim 500 to \sim 1000 Lanczos iterations
 - some applications need hundreds of eigenvalues
- Write eigenvectors to disk and calculate observables

Strong Scaling of MFDn

- Understand communication overheads in terms of heuristic network model based on set of compute nodes, physical links between compute nodes, and link capacity
- Hybrid OpenMP/MPI with 1 MPI processor per NUMA node performs better than MPI-only for more than few hundred cores
- Runs with 3-body forces scale better than NN-only runs

Aktulga, Yang, Ng, Maris, Vary, Concurrency Computat.: Pract. Exper. (2013)

Scaling of MFDn on Leadership Class Facilities

- Titan: Cray XK7 with 2.2 GHz AMD Opteron 16-core CPU with 32 GB per node (plus NVIDIA Kepler GPUs)
- Mira: IBM BG/Q with 1.6 GHz 16-core CPU with 16 GB per node (supporting up to 64 threads)

Nuclear potential not well-known,

though in principle calculable from QCD

$$\hat{\mathbf{H}} = \hat{\mathbf{T}}_{\mathsf{rel}} + \sum_{i < j} V_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

In practice, alphabet of realistic potentials

- Argonne potentials: AV8', AV18
 - plus Urbana 3NF (UIX)
 - plus Illinois 3NF (IL7)
- Bonn potentials
- **Chiral NN interactions**
 - plus chiral 3NF, ideally to the same order

Phenomeological NN interaction: JISP16

JISP16 tuned up to ¹⁶O

- Constructed to reproduce np scattering data
- Finite rank seperable potential in H.O. representation
- Nonlocal NN-only potential
- Use Phase-Equivalent Transformations (PET) to tune off-shell interaction to
 - binding energy of ³H and ⁴He
 - Iow-lying states of ⁶Li (JISP6, precursor to JISP16)

Av

binding energy of ¹⁶O

ailable online at www.sciencedirect.co	om
ScienceDirect	

PHYSICS LETTERS B

Physics Letters B 644 (2007) 33-37

www.elsevier.com/locate/physletb

Realistic nuclear Hamiltonian: Ab exitu approach

A.M. Shirokov $^{a,b,\ast},$ J.P. Vary $^{b,c,d},$ A.I. Mazur $^{e},$ T.A. Weber b

^a Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119992, Russia
^b Department of Physics and Astronomy, Jowa State University, Ames. IA 50011-3160, USA

^c Lawrence Livermore National Laboratory, L-414, 7000 East Avenue, Livermore, CA 94551, USA

^d Stanford Linear Accelerator Center, MS81, 2575 Sand Hill Road, Menlo Park, CA 94025, USA ^e Pacific National University, Tikhookeanskaya 136, Khabarovsk 680035, Russia

Ground state energy of p-shell nuclei with JISP16

Maris, Vary, IJMPE22, 1330016 (2013)

¹⁰B – most likely JISP16 produces correct 3⁺ ground state, but extrapolation of 1⁺ states not reliable due to mixing of two 1⁺ states

11 Be – expt. observed parity inversion within error estimates of extrapolation

¹²B and ¹²N – unclear whether gs is 1^+ or 2^+ (expt. at $E_x = 1$ MeV) with JISP16

Excitation spectrum 7Li

- Narrow states well converged, no extrapolation needed
- Broad resonances generally not as well converged; may need to incorporate continuum?

Quadrupole moment and B(E2) transition strengths 7Li

Cockrell, Maris, Vary, PRC86 034325 (2012)

- E2 observables not converged, due to gaussian fall-off of HO wavefunction
- Nevertheless, qualitative agreement of Q and B(E2) with data

Details: spin components of 7Li

Converged with N_{max} , persistent weak $\hbar\omega$ dependence $\frac{5}{2}^{-}$ states

• Two $\frac{5}{2}^{-}$ states have very different structure

Magnetic moments of p-shell nuclei with JISP16

Maris, Vary, IJMPE22, 1330016 (2013)

given that we do not have any meson-exchange currents

Energies of narrow A=6 to A=9 states with JISP16

Cockrell, Maris, Vary, PRC86 034325 (2012); Maris, Vary, IJMPE22, 1330016 (2013)

Excitation spectrum narrow states in good agreement with data

Emergence of rotational bands

- Solutional energy for states with axial symmetry $E(J) \propto J(J+1)$
- Quadrupole moments for rotational band

$$Q(J) = \frac{3K^2 - J(J+1)}{(J+1)(2J+3)} Q_0$$

Large B(E2) transition rates between members rotational band

$$\langle J_f || E2 || J_i \rangle = \sqrt{\frac{5}{16\pi}} \sqrt{2J_i + 1} \left(J_i K 20 |J_f K \right) \mathcal{Q}_0$$

Emergence of rotational bands

• Magnetic moments
$$\mu(J) = a_0 J + a_1 \frac{K}{J+1}$$

• Magnetic transitions
$$\langle J-1||M1||J\rangle = -\sqrt{\frac{3}{4\pi}} \sqrt{\frac{J^2-K^2}{J}} a_1$$

Details: one-body density of 9Be ground state $(\frac{3}{2}^{-}, \frac{1}{2})$

and their difference

Translationally-invariant proton and neutron densities Cockrell, PhD thesis, 2012

0

x (fm)

neutron

0.1

0.08

0.06

0.04

0.02

0

3

- Emergence of α clustering
 - extra neutron appears to be in π orbital

2

1

Ground state energy 10B

Extrapolated energy 3^+ state in reasonable agreement with data

Low-lying spectrum of 10B

- Two low-lying 1⁺ states
 - different convergence patterns
 - Ievel crossing hinders extrapolation
 - magnetic moments converged
- Slow convergence for 2⁺ state
- Good convergence for $(0^+, 1)$ state

Details: spin components 10B

$$J = \frac{1}{J+1} \left(\langle \vec{J} \cdot \vec{L}_p \rangle + \langle \vec{J} \cdot \vec{L}_n \rangle + \langle \vec{J} \cdot \vec{S}_p \rangle + \langle \vec{J} \cdot \vec{S}_n \rangle \right)$$

- Converged with N_{max} , same spin structure protons and neutrons
- **J** Two 1^+ states have very different structure
- Clear evidence of level crossing

Predictions for ¹⁴F confirmed by experiments at Texas A&M

 Theory published PRC: Feb. 4, 2010
 Physics Letters B 692 (2010) 307-311
 Experiment published: Aug. 3, 2010

 Contents lists available at ScienceDirect

 Physics Letters B

 www.elsevier.com/locate/physletb

First observation of ¹⁴F

V.Z. Goldberg^{a,*}, B.T. Roeder^a, G.V. Rogachev^b, G.G. Chubarian^a, E.D. Johnson^b, C. Fu^c, A.A. Alharbi^{a,1}, M.L. Avila^b, A. Banu^a, M. McCleskey^a, J.P. Mitchell^b, E. Simmons^a, G. Tabacaru^a, L. Trache^a, R.E. Tribble^a

^a Cyclotron Institute, Texas A&M University, College Station, TX 77843-3366, USA

^b Department of Physics, Florida State University, Tallahassee, FL 32306-4350, USA

^c Indiana University, Bloomington, IN 47408, USA

TAMU Cyclotron Institute

Fig. 1. (Color online.) The setup for the ¹⁴F experiment. The "gray box" is the scattering chamber. See explanation in the text.

Fig. 6. ¹⁴F level scheme from this work compared with shell-model calculations, *ab-initio* calculations [3] and the ¹⁴B level scheme [16]. The shell model calculations were performed with the WBP [21] and MK [22] residual interactions using the code COSMO [23].

NCFC predictions (JISP16) in close agreement with experiment

Nuclear interaction from chiral perturbation theory

- Strong interaction in principle calculable from QCD
- Use chiral perturbation theory to obtain effective A-body interaction from QCD
 Entem and Machleidt, Phys. Rev. C68, 041001 (2003)
 - sontrolled power series expansion in Q/Λ_{χ} with $\Lambda_{\chi} \sim 1$ GeV
 - natural hierarchy for many-body forces

 $V_{NN} \gg V_{NNN} \gg V_{NNNN}$

- in principle
 no free parameters
 - in practice a few undetermined parameters
- renormalization necessary

Leading-order 3N forces in chiral EFT

Similarity Renormalization Group – NN interaction

- drives interaction towards band-diagonal structure
- SRG shifts strength between 2-body and many-body forces
- Initial chiral EFT Hamiltonian power-counting hierarchy A-body forces

 $V_{NN} \gg V_{NNN} \gg V_{NNNN}$

key issue: preserve hierarchy of many-body forces

Bogner, Furnstahl, Maris, Perry, Schwenk, Vary, NPA801, 21 (2008) Roth, Langhammer, Calci, Binder, Navrátil, PRL 107 072501 (2011) Jurgenson, Maris, Furnstahl, Navrátil, Ormand, Vary, PRC87 054312 (2013)

Ground state energy of 7Li with SRG evolved chiral interaction

Running of ground state energy of 7Li with SRG evolution

Running of ground state energy of 10B with SRG evolution

Running of spectrum of 10B

- (1⁺, 0) at about 1.6(4) MeV with $\mu \approx 0.4$ (solid symbols)
 reasonably well converged, weak λ -dependence
- unconverged $(1^+, 0)$ with $\mu \approx 0.8$ (open symbols)
 - without 3NF: weak λ -dependence but strong $\hbar\Omega$ -dependence
 - with 3NF: not converged, very strong λ and $\hbar\Omega$ -dependence

Running of spectrum of 10B

• $(0^+, 1)$ at 1 to 3 MeV (open symbols)

• weak λ -dependence but moderate $\hbar\Omega$ -dependence

- $(2^+, 0)$ (solid symbols)
 - without 3NF: weak λ -dependence, moderate $\hbar\Omega$ -dependence, but too low in excitation energy
 - with 3NF: not converged, strong λ and $\hbar\Omega$ -dependence

Spectrum of ^{12}C

Maris, Vary, Calci, Langhammer, Binder, Roth, arXiv:1405:1331 [nucl-th]

- excitation energies reasonably well converged
- dependence of SRG parameter (left) generally smaller than dependence on basis $\hbar\Omega$ (right)

Spectrum of ^{12}C

- **•** Excitation energies $(1^+, 0)$ and $(0^+, 1)$ sensitive to 3NF
- Negative parity spectrum relative to lowest (3⁻,0) reasonably well converged, and 3NF improves agreement with experiment

Effect of 3-body forces on rotational excited states ¹²C

Maris et al J. Phys. Conf. Ser. 454, 012063 (2013)

- Qualitative agreement with data
- Not converged with explicit 3NF, despite weak N_{max} dependence
- Ratio's of excitation energies, quadrupole moments and B(E2)'s in agreement with rotational model

Intermezzo: Consistent chiral EFT 2- and 3-body interactions

Calculation of three-body forces at N³LO

Goal

Calculate matrix elements of 3NF in a partialwave decomposed form which is suitable for different few- and many-body frameworks

Challenge

Due to the large number of matrix elements, the calculation is extremely expensive.

Strategy

Develop an efficient code which allows to treat arbitrary local 3N interactions. (Krebs and Hebeler)

Something different: Ab Initio Extreme Neutron Matter

Neutrons confined in a trap

- Model for neutron-rich systems in particular those with closed shell protons (Oxygen, Calcium)
- Theoretical 'laboratory' to explore
 - properties of different nuclear interactions
 - effect of density and gradient on nuclear properties for different interactions
- Construct and/or validate Nuclear Energy Density Functionals using microscopic ab-initio calculations
 - Validate Density Matrix Expansion using Minnesota potential Bogner *et al*, arXiv:1106.3557 [nucl-th], PRC84, 044306 (2011)
 - Adjust standard Skyrme functionals to reproduce ab-initio neutron drop energies Gandolfi, Carlson, Pieper, arXiv:1010.4583 [nucl-th], PRL106 012501 (2011)

Neutrons confined in HO external field

Potter, Fischer, Maris, Vary, Binder, Calci, Langhammer, Roth, arXiv:1406.1160 [nucl-th]

- chiral NN at N³LO
- chiral 3N at N²LO
- **3N LEC values:** $c_D = -0.2,$ $c_E = -0.205$
- 500 MeV cutoff

AV8'(+3NF) data from Gandolfi, Carlson, Pieper, PRL106 012501 (2011)

- Chiral 3NF very weak repulsive
- Chiral EFT results very similar to AV8' without 3NF

Neutrons confined in HO external field

Potter, Fischer, Maris, Vary, Binder, Calci, Langhammer, Roth, arXiv:1406.1160 [nucl-th]

- Clear evidence for pairing with chiral EFT potential both in total energy (left) and in internal energy (right)
- GFMC results for AV8' + IUX show significantly less pairing, in particular above N = 8

JISP16, AV8'+3NF data from Maris, Vary, Gandolfi, Carlson, Pieper, PRC87 054318 (2013)

- Reaching the limit of *M*-scheme N_{max} truncation
 - extremely large, extremely sparse matrices

- Reaching the limit of *M*-scheme N_{max} truncation
- Exploit symmetries to reduce basis dimension
 - SU(3) basis
 - Coupled-J basis

Dytrych *et al*, PRL111, 252501 (2013) Aktulga, Yang, Ng, Maris, Vary, HPCS2011

 smaller, but less sparse matrices

- number of nonzero matrix elements often (significantly) larger than in M-scheme
- construction of matrix more costly
- diagonalization cheaper than in *M*-scheme

- Reaching the limit of *M*-scheme N_{max} truncation
- Exploit symmetries to reduce basis dimension
- Reduce basis dim. by keeping only most important basis states
 - Symmetry Adapted No-Core Shell Model

- Reaching the limit of *M*-scheme N_{max} truncation
- Exploit symmetries to reduce basis dimension
- Reduce basis dim. by keeping only most important basis states
 - Symmetry Adapted NCSM Dytrych et al, PRL111, 252501 (2013)
 - Importance Truncated NCSM Roth, PRC79, 064324 (2009)
 - reduce basis dimension by (several) order(s) of magnitude
 - many-body states single Slater Determinants in M-scheme
 - No-Core Monte-Carlo Shell Model
 - Abe, Maris, Otsuka, Shimizu, Utsuno, Vary, PRC86, 054301 (2012)
 - reduce basis to (few) hundred highly optimized states
 - many-body states linear combination of Slater Deteminants
 - hotspot: construction of optimized basis and of many-body matrix

Caveat: Uncertainty Quantification

can the numerical errors due to reduced basis dimension be quantified within the computation framework?

- Reaching the limit of *M*-scheme N_{max} truncation
- Exploit symmetries to reduce basis dimension
- Reduce basis dim. by keeping only most important basis states
- Accelerate convergence rate with N_{max}
 - Similarity Renormalization Group

- construction of renormalized input Hamiltonian
- need to transform operators as well as Hamiltonian
- include induced many-body interactions and operators?

- Reaching the limit of M-scheme N_{max} truncation
- Exploit symmetries to reduce basis dimension
- Reduce basis dim. by keeping only most important basis states
- Accelerate convergence rate with N_{max}
 - Similarity Renormalization Group
 - More flexible / realistic (radial) basis functions

e.g. Coulomb–Sturmian basis to improve convergence of RMS radius, Caprio, Maris, Vary, PRC86, 034312 (2012)

Conclusions

- No-core Configuration Interaction nuclear structure calculations
 - Binding energy, spectrum, magnetic moments
 - $\langle r^2 \rangle$, Q, transitions, wfns, one-body densities
- Main challenge: construction and diagonalization of extremely large (D $\sim 10^{10}$) sparse (NNZ $\sim 10^{14}$) matrices

JISP16

- Nonlocal phenomenological 2-body interaction
- Good convergence for energies and magnetic moments
- Good description of *p*-shell nuclei
- Chiral EFT interactions
 - Slower convergence than JISP16, improved by SRG
 - Need consistent NN and 3NF for description of nuclei
 - Effect 3NF on pure neutron drops very small
- Would not have been possible without collaboration with applied mathematicians and computer scientists