Factorization Algorithms for Large-Scale Many-Body Problems

Calvin Johnson, Department of Physics *and* Computational Science Research Center San Diego State University *cjohnson* @ *mail* . *sdsu* . *edu*

Collaborators: W. Erich Ormand, Lawrence Livermore Plamen G. Krastev, SDSU/Harvard Ken McElvain, UC Berkeley/LBNL

Supported by U.S. Department of Energy

C. W. Johnson, W. E. Ormand, and P. G. Krastev, Comp. Phys. Comm. **184**, 2761-2774 (2013)

The basic *science question* is to model detailed quantum structure of many-body systems, such the electronic structure of an atom, or structure of an atomic nucleus.

To answer this, we attempt to solve *Schrödinger's equation*:

$$\left(\sum_{i} -\frac{\hbar^2}{2m} \nabla^2 + U(r_i) + \sum_{i < j} V(\vec{r}_i - \vec{r}_j)\right) \Psi(\vec{r}_1, \vec{r}_2, \vec{r}_3 \dots) = E \Psi$$

or

$$\hat{\mathbf{H}}|\Psi\rangle = E|\Psi\rangle$$

The basic *science question* is to model detailed quantum structure of many-body systems, such the electronic structure of an atom, or structure of an atomic nucleus.

This differential equation is too difficult to solve directly

$$\left(\sum_{i} -\frac{\hbar^2}{2m} \nabla^2 + U(r_i) + \sum_{i < j} V(\vec{r}_i - \vec{r}_j)\right) \Psi(\vec{r}_1, \vec{r}_2, \vec{r}_3 \dots) = E \Psi$$

so we use the matrix formalism

$$\hat{\mathbf{H}}|\Psi\rangle = E|\Psi\rangle$$

Nuclear Hamiltonian: $\hat{H} = \sum_{i} -\frac{\hbar^2}{2M} \nabla_i^2 + \sum_{i < j} V(r_i, r_j)$

Solve by diagonalizing **H** in a basis of many-body states. The many-body states are *Slater determinants*, or anti-symmeterized products of single-particle wfns.

The single-particle states are defined by a single-particle potential U(r) (such as harmonic oscillator or Hartree-Fock)

At this point one generally goes to occupation representation:

$$\hat{H} = \sum_{i} \varepsilon_{i} \hat{a}_{i}^{\dagger} \hat{a}_{i} + \frac{1}{4} \sum_{ijkl} V_{ijkl} \hat{a}_{i}^{\dagger} \hat{a}_{j}^{\dagger} \hat{a}_{l} \hat{a}_{k}$$

Maria Mayer

single-particle energies

two-body matrix elements

When running a fermion shell model code (e.g. MFD, **BIGSTICK**), one enters the following information:

(1) The single-particle valence space (such as *sd* or *pf*); assumes inert core

(2) The many-body model space (number of protons and neutrons, truncations, etc.)

(3) The interaction: single-particle energies and two-body matrix elements $V_{JT}(ab,cd)$

Summary:

The Schrödinger eqn has become a matrix eigenvalue equation

$$\sum_{B} H_{AB} \mathbf{v}_{B} = E_{A} \mathbf{v}_{A}$$

One chooses a basis of approx10⁴ - 10¹⁰ states

Key point: Once a basis is chosen, the two-body interaction is reduced to integrals between single-particle states and is **stored as a list of real numbers** (the *two-body matrix elements*)

A *shell model program* then computes the *many-body matrix elements* from the *two-body (and sometimes three—body) matrix elements* and solves for eigenvalues/vectors.

A PROBLEM....

Despite sparsity, nonzero matrix elements can require TB of storage

Nuclide	Space	Basis dim	matrix store
⁵⁶ Fe	pf	501 M	3.5 Tb
⁷ Li	N _{max} =12	252 M	3.6 Tb
⁷ Li	N _{max} =14	1200 M	23 Tb
¹² C	N _{max} =6	32M	0.2 Tb
¹² C	N _{max} =8	590M	5 Tb
¹² C	N _{max} =10	7800M	111 Tb
¹⁶ O	N _{max} =6	26 M	0.14 Tb
¹⁶ O	N _{max} =8	990 M	9.7 Tb

Spread nonzero matrix elements over many MPI compute nodes: For example, the Iowa MFDn code

THE KEY IDEAS

Basic problem: find extremal eigenvalues of very large, very sparse Hermitian matrix

Lanczos algorithm

fundamental operation is *matrix-vector multiply*

Despite sparsity, nonzero matrix elements can require TB of storage

Only a fraction of matrix elements are unique; **most are reused.** Reuse of matrix elements understood through *spectator* particles.

Reuse can be **exploited using exact factorization** enforced through *additive/multiplicative quantum numbers*

The algorithms described today are best applied to many body systems with (a)two "species" (protons and neutrons, or +1/2 and -1/2 electrons) (b)single-particle basis states with good rotational symmetry (j, m)

Find extremal eigenvalues of very large, very sparse Hermitian matrix

Lanczos algorithm

fundamental operation is *matrix-vector multiply*

we use the matrix formalism

$$\hat{\mathbf{H}}|\Psi\rangle = E|\Psi\rangle$$

$$|\Psi\rangle = \sum_{\alpha} c_{\alpha}|\alpha\rangle \qquad H_{\alpha\beta} = \langle \alpha |\hat{\mathbf{H}}|\beta\rangle$$

$$\sum_{\alpha} H_{\alpha\beta}c_{\beta} = Ec_{\alpha} \quad \text{if} \quad \langle \alpha |\beta\rangle = \delta_{\alpha\beta}$$

Find extremal eigenvalues of very large, very sparse Hermitian matrix

Lanczos algorithm

fundamental operation is *matrix-vector multiply*

$$H_{\alpha\beta} = \left\langle \alpha | \hat{\mathbf{H}} | \beta \right\rangle$$

* **H** is generally a very large matrix – dimensions up to 10^{10} have been tackled.

- * **H** is generally very sparse (in M-scheme).
- * We usually only want a few low-lying states

Lanczos algorithm! (or variant, e.g. LOBPCG)

Find extremal eigenvalues of very large, very sparse Hermitian matrix Lanczos algorithm fundamental operation is matrix-vector multiply

Standard algorithm to obtain *all* eigenvalues of a real, symmetric matrix **A**: <u>Householder</u>

Find orthogonal matrix U such that $U^T A U = B$, a tridiagonal matrix

The Lanczos algorithm is similar, in that it also uses an orthogonal matrix to take \mathbf{A} to a tridiagonal matrix \mathbf{B}

Lanczos algorithm!

Find extremal eigenvalues of very large, very sparse Hermitian matrix Lanczos algorithm

fundamental operation is *matrix-vector multiply*

$$\mathbf{A}\vec{v}_{1} = \alpha_{1}\vec{v}_{1} + \beta_{1}\vec{v}_{2}$$

$$\mathbf{A}\vec{v}_{2} = \beta_{1}\vec{v}_{1} + \alpha_{2}\vec{v}_{2} + \beta_{2}\vec{v}_{3}$$

$$\mathbf{A}\vec{v}_{3} = \beta_{2}\vec{v}_{2} + \alpha_{3}\vec{v}_{3} + \beta_{3}\vec{v}_{4}$$

$$\mathbf{A}\vec{v}_{4} = \beta_{3}\vec{v}_{3} + \alpha_{4}\vec{v}_{4} + \beta_{4}\vec{v}_{5}$$

Lanczos algorithm!

Find extremal eigenvalues of very large, very sparse Hermitian matrix

Lanczos algorithm **fundamental operation is** *matrix-vector multiply*

$$\begin{aligned} \mathbf{A}\vec{v}_{1} &= \alpha_{1}\vec{v}_{1} + \beta_{1}\vec{v}_{2} \\ \mathbf{A}\vec{v}_{2} &= \beta_{1}\vec{v}_{1} + \alpha_{2}\vec{v}_{2} + \beta_{2}\vec{v}_{3} \\ \mathbf{A}\vec{v}_{3} &= \beta_{2}\vec{v}_{2} + \alpha_{3}\vec{v}_{3} + \beta_{3}\vec{v}_{4} \\ \mathbf{A}\vec{v}_{4} &= \beta_{3}\vec{v}_{3} + \alpha_{4}\vec{v}_{4} + \beta_{4}\vec{v}_{5} \end{aligned}$$
matrix-vector multiply

Lanczos algorithm!

Despite sparsity, nonzero matrix elements can require TB of storage

I need to quickly cover:

- How the basis states are represented
- How the Hamiltonian operator is represented
- •Why most matrix elements are zero
- Typical dimensions and sparsity

Despite sparsity, nonzero matrix elements can require TB of storage

• How the basis states are represented

This differential equation is too difficult to solve directly $\left(\sum_{i} -\frac{\hbar^2}{2m} \nabla^2 + U(r_i) + \sum_{i < j} V(\vec{r}_i - \vec{r}_j)\right) \Psi(\vec{r}_1, \vec{r}_2, \vec{r}_3 \dots) = E\Psi$

Can only really solve 1D differential equation

$$\left(-\frac{\hbar^2}{2m}\frac{d^2}{dr^2} + U(r)\right)\phi_i(r) = \varepsilon_i\phi_i(r)$$

Despite sparsity, nonzero matrix elements can require TB of storage

• How the basis states are represented

Can only really solve 1D differential equation

$$\left(-\frac{\hbar^2}{2m}\frac{d^2}{dr^2}+U(r)\right)\phi_i(r)=\varepsilon_i\phi_i(r) \quad \Longrightarrow \quad \left\{\phi_i(\vec{r})\right\}$$

Single-particle wave functions labeled by, *e.g.*, *n*, *j*, *l*, *m*

Atomic case: 1s, 2s, 2p, 3s, 3p, 3d etc

Nuclear: $0s_{1/2}$, $0p_{3/2}$, $0p_{1/2}$, $0d_{5/2}$, $1s_{1/2}$, $0d_{3/2}$, *etc*

Despite sparsity, nonzero matrix elements can require TB of storage

- How the basis states are represented
 - Product wavefunction ("Slater Determinant")

$$\Psi(\vec{r}_{1},\vec{r}_{2},\vec{r}_{3}...) = \phi_{(n_{1})}(\vec{r}_{1})\phi_{(n_{2})}(\vec{r}_{2})\phi_{(n_{3})}(\vec{r}_{3})...\phi_{(n_{N})}(\vec{r}_{N})$$

Each many-body state can be *uniquely* determined by a list of "occupied" single-particle states = "occupation representation"

$$|\alpha\rangle = \hat{a}_{n_1}^+ \hat{a}_{n_2}^+ \hat{a}_{n_3}^+ \dots \hat{a}_{n_N}^+ |0\rangle$$

Despite sparsity, nonzero matrix elements can require TB of storage

• How the Hamiltonian is represented

"occupation representation"

$$|\alpha\rangle = \hat{a}_{n_1}^+ \hat{a}_{n_2}^+ \hat{a}_{n_3}^+ \dots \hat{a}_{n_N}^+ |0\rangle$$

n _i	1	2	3	4	5	6	7
α=1	1	0	0	1	1	0	1
α=2	1	0	1	0	0	1	1
α=3	0	1	1	1	0	1	0

Despite sparsity, nonzero matrix elements can require TB of storage

• How the Hamiltonian is represented some technical details: $|\alpha\rangle =$ the "M-scheme"

$$|\alpha\rangle = \hat{a}_{n_1}^+ \hat{a}_{n_2}^+ \hat{a}_{n_3}^+ \dots \hat{a}_{n_N}^+ |0\rangle$$

label	Ν	I	m _l	
1	1	0 (S)	0	
2	2	0 (S)	0	
3	2	1 (P)	1	
4	2	1 (P)	0	
5	2	1 (P)	-1	

For any Slater determinant, the total M = sum of the m_1 's

Because J_z commutes with H, we can use a basis with M fixed = "M-scheme"

Despite sparsity, nonzero matrix elements can require TB of storage

• How the Hamiltonian is represented some technical details: $|\alpha\rangle =$ the "M-scheme"

$$|\alpha\rangle = \hat{a}_{n_1}^+ \hat{a}_{n_2}^+ \hat{a}_{n_3}^+ \dots \hat{a}_{n_N}^+ |0\rangle$$

label	Ν		m	
1	1	0 (S)	0	
2	2	0 (S)	0	
3	2	1 (P)	1	
4	2	1 (P)	0	
5	2	1 (P)	-1	

If I have two species (spin up/down) then *combined* M must be fixed:

e.g. 4 electrons, M = 0, + parity spin up: states 1 + 2 $(1S_{m=0})(2S_{m=0})$ spin down: 3 +5 $(2P_{m=1})(2P_{m=-1})$ or

spin up: states 1 + 3 $(1S_{m=0})(2P_{m=1})$ spin down: states 2, 5 $(2S_{m=0})(2P_{m=-1})$

Despite sparsity, nonzero matrix elements can require TB of storage

• How the Hamiltonian is represented

"occupation representation"

$$|\alpha\rangle = \hat{a}_{n_1}^+ \hat{a}_{n_2}^+ \hat{a}_{n_3}^+ \dots \hat{a}_{n_N}^+ |0\rangle$$

n _i	1	2	3	4	5	6	7
α=1	1	0	0	1	1	0	1
α=2	1	0	1	0	0	1	1
α=3	0	1	1	1	0	1	0

$$\hat{H} = \sum_{ij} T_{ij} \hat{a}_i^{\dagger} \hat{a}_j + \frac{1}{4} \sum_{ijkl} V_{ijkl} \hat{a}_i^{\dagger} \hat{a}_j^{\dagger} \hat{a}_l \hat{a}_k$$

Despite sparsity, nonzero matrix elements can require TB of storage

• How the Hamiltonian is represented $|\alpha\rangle = \hat{a}_{n_1}^+ \hat{a}_{n_2}^+ \hat{a}_{n_3}^+ \dots \hat{a}_{n_N}^+ |0\rangle$ "occupation representation" n **α=1 α=2** α=3

$$\hat{a}_3^+ \hat{a}_6^+ \hat{a}_4 \hat{a}_5 |\alpha = 1\rangle = |\alpha = 2\rangle$$

Despite sparsity, nonzero matrix elements can require TB of storage

• How the Hamiltonian is represented $|\alpha\rangle = \hat{a}_{n_1}^+ \hat{a}_{n_2}^+ \hat{a}_{n_3}^+ \dots \hat{a}_{n_N}^+ |0\rangle$ "occupation representation" n **α=1 α=2** 1 1 α=3

$$\hat{a}_2^+ \hat{a}_4^+ \hat{a}_1 \hat{a}_7 | \alpha = 2 \rangle = | \alpha = 3 \rangle$$

Despite sparsity, nonzero matrix elements can require TB of storage • Why most matrix elements are zero $|\alpha\rangle = \hat{a}_{n_1}^+ \hat{a}_{n_2}^+ \hat{a}_{n_3}^+ \dots \hat{a}_{n_N}^+ |0\rangle$ "occupation representation" n_i $\alpha = 1$ **α=2** α=3

 $\hat{a}_{2}^{+}\hat{a}_{4}^{+}\hat{a}_{6}^{+}\hat{a}_{1}\hat{a}_{5}\hat{a}_{7}|\alpha=1\rangle = |\alpha=3\rangle$ need 3 particles to interact simultaneously!

Despite sparsity, nonzero matrix elements can require TB of storage

• Typical dimensions and sparsity

Nuclide	valence space	valence Z	valence N	basis dim	sparsity (%)
²⁰ Ne	"sd"	2	2	640	10
^{25}Mg	"sd"	4	5	44,133	0.5
⁴⁹ Cr	"pf"	4	5	6M	0.01
⁵⁶ Fe	"pf"	6	10	500M	2x10 ⁻⁴
					7

This corresponds to 2 Tb of data!

RECYCLED MATRIX ELEMENTS

Only a fraction of matrix elements are unique; **most are reused.** Reuse of matrix elements understood through *spectator* particles.

 $\hat{a}_4^+ \hat{a}_5^+ \hat{a}_3 \hat{a}_8 | \alpha = 3 \rangle = |\alpha = 4 \rangle$ $\hat{a}_4^+ \hat{a}_5^+ \hat{a}_3 \hat{a}_8 | \alpha = 5 \rangle = |\alpha = 6 \rangle$

All of these have the same matrix element: V_{4538}

RECYCLED MATRIX ELEMENTS

Only a fraction of matrix elements are unique; **most are reused.**

Reuse of matrix elements understood through *spectator* particles.

of nonzero matrix elements vs. # unique matrix elements

Nuclide	valence space	valence Z	valence N	# nonzero	# unique
$^{28}\mathrm{Si}$	"sd"	6	6	$26 \ge 10^{6}$	3600
⁵² Fe	"pf"	6	6	90 x 10 ⁹	21,500

Atom	space	# nonzero	# unique
Be	CVB3	$110x10^{6}$	521,000
В	CVB2	$1.4 x 10^9$	379,000
С	CVB1	260×10^{6}	40,751

Reuse can be **exploited using exact factorization** enforced through *additive/multiplicative quantum numbers*

A quantum number is the eigenvalue of an operator

For composite systems, one can apply the operator to each component separately:

$$\hat{O}|\Psi\rangle = (\hat{O}_1 + \hat{O}_2 + \hat{O}_3 + \ldots)(|\Psi_1\rangle \otimes |\Psi_2\rangle \otimes |\Psi_3\rangle \otimes \ldots)$$

Sometimes the total quantum number is a simple sum/product as is the case for \mathbf{J}_z or parity....

$$\hat{J}_{z}|\Psi\rangle = M|\Psi\rangle = (m_{1} + m_{2} + m_{3} + \ldots)|\Psi\rangle$$

...but in other cases the addition is complicated (e.g. for \mathbf{J}^2)

Reuse can be **exploited using exact factorization**

enforced through *additive/multiplicative quantum numbers*

I consider composite many-fermion systems, in particular those with 2 major components *protons* and *neutrons*

or

spin-up and spin-down electrons

$$\left|\Psi\right\rangle = \left|\Psi_{1}\right\rangle \otimes \left|\Psi_{2}\right\rangle$$

Each component itself is a Slater determinant which is composed of many particles

$$\hat{J}_{z} |\Psi\rangle = M |\Psi\rangle \qquad M = M_{1} + M_{2}$$
$$M_{1} = m_{1}^{(1)} + m_{1}^{(2)} + m_{1}^{(2)} + \dots$$

Reuse can be **exploited using exact factorization**

enforced through *additive/multiplicative quantum numbers*

Because the M values are discrete integers or half-integers (-3, -2, -1, 0, 1, 2, ... or -3/2, -1/2, +1/2, +3/2...) we can organize the basis states in discrete *sectors*

Example: 2 protons, 4 neutrons, total M = 0

$$M_{z}(\pi) = -4 \qquad M_{z}(\upsilon) = +4$$

$$M_{z}(\pi) = -3 \qquad M_{z}(\upsilon) = +3$$

$$M_{z}(\pi) = -2 \qquad M_{z}(\upsilon) = +2$$

Reuse can be **exploited using exact factorization**

enforced through *additive/multiplicative quantum numbers*

In fact, we can see an example of factorization here because all proton Slater determinants in one M-sector *must* combine with all the conjugate neutron Slater determinants

Example: 2 protons, 4 neutrons, total M = 0

$$M_z(\pi) = -4: 2 \text{ SDs}$$
 $M_z(\upsilon) = +4: 24 \text{ SDs}$
 48 combined

 $M_z(\pi) = -3: 4 \text{ SDs}$
 $M_z(\upsilon) = +3: 39 \text{ SDs}$
 156 combined

 $M_z(\pi) = -2: 9 \text{ SDs}$
 $M_z(\upsilon) = +2: 60 \text{ SDs}$
 540 combined

Reuse can be **exploited using exact factorization**

enforced through *additive/multiplicative quantum numbers*

In fact, we can see an example of factorization here because all proton Slater determinants in one M-sector *must* combine with all the conjugate neutron Slater determinants

M _z (π) = -4: 2 SDs	M _z (υ) = +4: 24 SDs	48 combined
$egin{array}{c} \pi_1 angle \ \pi_2 angle \qquad igmta$	$ \begin{vmatrix} \boldsymbol{v}_1 \\ \boldsymbol{v}_2 \\ \boldsymbol{v}_2 \\ \boldsymbol{v}_3 \\ \boldsymbol{v}_4 \\ \vdots \\ \boldsymbol{v}_{44 \\ \boldsymbol{v}_{24} \\ \end{pmatrix} $	$egin{aligned} & \pi_1 angle & u_1 angle \ & \pi_2 angle & u_1 angle \ & \pi_1 angle & u_2 angle \ & \pi_2 angle & u_2 angle \ &dots &d$

32

Reuse can be **exploited using exact factorization**

enforced through *additive/multiplicative quantum numbers*

		Ex	ample N = Z nu	clei
	$ \alpha\rangle = \alpha_p\rangle \times \alpha_n\rangle$	Nuclide	Basis dim	<u># pSDs (=#nSDs)</u>
	Neutron SDs	²⁰ Ne	640	66
•		²⁴ Mg	28,503	495
•		²⁸ Si	93,710	924
on SDs		⁴⁸ Cr	1,963,461	4895
Prote		⁵² Fe	109,954,620	38,760
		⁵⁶ Ni	1,087,455,228	125,970
•				

Reuse can be **exploited using exact factorization**

enforced through *additive/multiplicative quantum numbers*

Factorization allows us to keep track of all basis states without writing out every one explicitly -- we only need to write down the proton/neutron components

The same trick can be applied to matrix-vector multiply

Reuse can be **exploited using exact factorization**

enforced through *additive/multiplicative quantum numbers*

There are potentially 48×48 matrix elements But for H_{pp} at most 4×24 are nonzero and we only have to look up 4 matrix elements

Advantage: **we can store 98 matrix elements as 4 matrix elements** and avoid 2000+ zero matrix elements.

Reuse can be **exploited using exact factorization**

enforced through *additive/multiplicative quantum numbers*

 $M_{z}(\pi) = -4: 2 \text{ SDs}$

 $M_{z}(v) = +4:24 \text{ SDs}$

48 combined

Advantage: **we can store 98 matrix elements as 4 matrix elements** and avoid 2000+ zero matrix elements.

Reuse can be **exploited using exact factorization**

enforced through *additive/multiplicative quantum numbers*

M _z (π) =	-4: 2 SDs	$M_z(v) =$	+4: 24 SDs	48 combined	
$egin{array}{c} \pi_1 angle \ \pi_2 angle & H_{pp} \end{array}$	$= \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix}$	$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} ellow_2 & \ egin{aligned} egin{aligned} ellow_4 & \ egin{aligned} egin{aligned} ellow_2 & \ egin{aligned} ellow_2 & \ egin{aligned} ellow_2 & \ ellow_2 & \ \end{pmatrix} \end{array}$	$egin{aligned} &H_{pp} \pi_1 angle u_1 angle = \ &H_{pp} \pi_2 angle u_1 angle = \ &H_{pp} \pi_1 angle u_2 angle = \ &H_{pp} \pi_2 angl$	$= H_{11} \pi_1\rangle \nu_1\rangle + H_{12}$ $= H_{12} \pi_1\rangle \nu_1\rangle + H_2$ $= H_{11} \pi_1\rangle \nu_2\rangle + H_1$ $= H_{12} \pi_1\rangle \nu_2\rangle + H_2$ $= H_{12} \pi_1\rangle \nu_2\rangle + H_2$	$egin{aligned} & \pi_2 angle & u_1 angle \ &_2 & \pi_2 angle & u_1 angle \ &_2 & u_2 angle \ &_{22} & u_2 angle \ &_{22} & u_2 angle \ &_{12} & u_2 angle & u_2 angle \ &_{24} angle \ &_{22} & u_{24} angle \ &_{22} & u_{24} angle \end{aligned}$

Advantage: we can store 98 matrix elements as 4 matrix elements and avoid 2000+ zero matrix elements.

Reuse can be **exploited using exact factorization**

enforced through *additive/multiplicative quantum numbers*

Comparison of nonzero matrix storage with factorization

Nuclide	Space	Basis dim	matrix store	factorization
⁵⁶ Fe	pf	501 M	3500 Gb	0.72 Gb
⁷ Li	N _{max} =12	252 M	3800 Gb	61 Gb
⁷ Li	N _{max} =14	1200 M	23 Tb	624 Gb
¹² C	N _{max} =6	32M	196 Gb	3.3 Gb
¹² C	N _{max} =8	590M	5000 Gb	65 Gb
¹² C	N _{max} =10	7800M	111 Tb	1.4 Tb
¹⁶ O	N _{max} =6	26 M	142 Gb	3.0 Gb
¹⁶ O	N _{max} =8	990 M	9700 Gb	130 Gb

PARALLEL IMPLEMENTATION

Factorization makes it easier to compute workload and distribute across multiple nodes

PARALLEL IMPLEMENTATION

Factorization makes it easier to compute workload and distribute across multiple nodes

Some Shell-Model Codes

Matrix storage:

Oak Ridge-Rochester (small matrices)

```
Glasgow-Los Alamos (M-scheme, stored on disk; introduced Lanczos)
```

```
OXBASH /Oxford-MSU (J-scheme, stored on disk)
```

CMSM / Central Michigan (M-scheme, stored on disk farm)

MSHELL64 (?) / Mizusaki et al

MFDn/ Iowa State (M-scheme, stored in RAM; plans for J-scheme,

SU(3)-scheme w/LSU)

Factorization:

```
ANTOINE Strasbourg (M-scheme; originator of factorization)
```

NATHAN Strasbourg (J-scheme)

EICODE (J-scheme)

NuShell/NuShellX (J-scheme)

KSHELL CNS U Tokyo (M-scheme Shimuzu; cf. arviv:1310.5431)

REDSTICK+BIGSTICK/ LSU-SDSU-Livermore

Other approaches:

"Shell-model Monte Carlo" (Koonin, Johnson, Ormand, Dean, Alhassid, Langanke..) Rewrite as path integral, evaluate by Monte Carlo

"Monte Carlo Shell-Model" (Otsuka *et al*) Sample basis from Monte Carlo random walk over path integral

Importance truncation (R. Roth *et al*, **a** Darmstadt group): Truncate basis using perturbation theory

THE BIGSTICK CODE

Many-fermion code: 2nd generation after REDSTICK code (started in *Baton Rouge, La*.)

Arbitrary single-particle radial waveforms Allows local or nonlocal two-body interaction Applies to both nuclear and atomic cases

Runs on both desktop and parallel machines --can run at least dimension 100M+ on desktop (20 Lanczos iterations in 300 CPU minutes)

20-30k lines of codes Fortran 90 + MPI + OpenMP Partially funded by SciDAC Plans to run on 50,000-100,000 compute nodes Plans to publish code 2015

SCIENCE APPLICATIONS:

- Benchmarking approximations:
 - -- J-projected Hartree-Fock (J. Staker)
 - -- Quartet approximation (N. Sandulescu)
 - -- Spin-cutoff parameterization for level densities (W. Spinella)
- Transition strength functions, e.g. Gamow-Teller
 - -- $\frac{1}{2}$ million transitions in *sd* shell for astro library (M. Bertolli)
 - -- Transitions from excited state/Axel-Brink (M. Schuster)
 - -- Isospin violation corrections to superallowed (Kruse & Ormand)
 - -- SRG-evolved operators (M. Schuster and S. Quaglioni)
- Spin-Orbit (LS) analysis of wavefunctions

SCIENCE APPLICATION: L-S decomposition of nuclear wavefunctions

Spin-orbit dissection of nuclear wavefunctions --look at fraction of total L or total S

Nuclide	Model space	Interaction	g.s. =	g.s. =
⁴⁸ Ca	pf	KB3G	90 % (Of _{7/2}) ⁸	20% L = 0
²⁴ O	sd	USDB	91% (Od $_{5/2}$) ⁶ (1s $_{\frac{1}{2}}$) ²	34% L = 0
²² O	sd	USDB	75% (Od _{5/2}) ⁶	38% L = 0
⁸ He	р	Cohen-Kurath	53 % (0p _{3/2}) ⁴	96% L = 0
³² S	sd	USDB	29 % (0d $_{5/2}$) ¹² (1s $_{\frac{1}{2}}$) ⁴	34% L = 0
²⁸ Si	sd	USDB	21% (0d _{5/2}) ¹²	36% L = 0
¹² C	р	Cohen-Kurath	37% (0p _{3/2}) ⁸	82% L = 0

This illustrates a (once) well-known fact: that L-S coupling is a better approximation in the *p*-shell than *j*-*j* coupling.

Let's now do L-S decomposition of *ab initio p*-shell wavefunctions

Why?

-- To see if this pattern holds for *ab initio* interactions-- How well do phenomenological interactions match *ab initio*?

-- Crucially, we know the 3-body forces strongly affects the spin-orbit force. Can we see this happen directly? *Note:* In this talk I only give 2-body results. Need 3-body forces... ^{12}C

Phenomenological Cohen-Kurath force (1965) in 0p shell m-scheme dimension: 51

NCSM: N3LO chiral 2-body force SRG evolved^{*} to $\lambda = 2.0$ fm⁻¹, N_{max} = 6, $\hbar\omega$ =22 MeV *m*-scheme dimension: 35 million

*code courtesy of P. Navratil, any mistakes in using it are mine!

And the (rotational) band played on...

$^{10}\mathbf{B}$

Phenomenological Cohen-Kurath m-scheme dimension: 84

NCSM: N3LO chiral 2-body force SRG evolved to $\lambda = 2.0 \text{ fm}^{-1}$, $N_{\text{max}} = 6$, $\hbar\omega=22 \text{ MeV}$ *m*-scheme dimension: 12 million

- -

$^{11}\mathbf{B}$

Phenomenological Cohen-Kurath *m*-scheme dimension: 62

NCSM: N3LO chiral 2-body force SRG evolved to $\lambda = 2.0 \text{ fm}^{-1}$, $N_{\text{max}} = 6$, $\hbar\omega=22 \text{ MeV}$ *m*-scheme dimension: 20 million

BONUS ROUND

We can combine these half Slater determinants into a "full" Slater determinant, in the same way that we combined proton and neutron Slater determinants into the final many-body basis.

<u>Nuclide</u>	Basis dim	<u> </u>	# half Slater Determinants
²⁰ Ne	640	66	22
²⁴ Mg	28,503	495	57
²⁸ Si	93,710	924	64
⁴⁸ Cr	1,963,461	4895	386
⁵² Fe	109,954,620	38,760	848
⁵⁶ Ni	1,087,455,228	125,970	1,013

Sample numbers:

Nuclide	Basis dim	# pSDs	<u># half Slater Determin</u>	<u>ants</u>
¹² C (4hw)	1.1 M	33,475	5448	
¹² C (6hw)	32.6 M	381,159	40,247	
¹² C (8hw)	594 M	2.9 M	232,553	
¹⁶ O (8hw)	996 M	5M	497,493	

Note that while all proton and neutron SDs have the same particle number, we build SDs from half-SDs with differing # of particles (but the sum is fixed—just another quantum number).

This leads to another innovation.

The fundamental operation on half-SDs is not jumps but "hops" which are single-particle creation/annihilation.

This turns out to be natural, easy, and quick.

Half-SDs are generated recursively:

$$\begin{split} N_h &= 0; \quad 000000 \\ N_h &= 1; \quad 100000 \quad 010000 \quad 001000 \quad 000100 \ \ldots. \\ N_h &= 2; \quad 110000 \quad 011000 \quad 001100 \quad 000110 \ \ldots. \\ 101000 \quad 010100 \quad 001010 \quad 000101 \ \ldots. \\ 100010 \quad 010001 \quad \ldots. \\ 100001 \quad \ldots. \end{split}$$

Each half-SD has a fixed number of *destruction hops*: it takes only a very short search to find the final half-SD:

 $N_{h} = 0$: $N_{\rm h} = 1$: 001000 000100 001100 000110 $N_{\rm h} = 2$: 001010 000101

Finding all the *creation hops* is even easier, because we just reverse the destruction hops:

Like the number of half-SDs, the number of hops is small

²⁸Si: 192 hops

⁵²Fe: 3820 hops

¹²C (6hw): 171,409 hops

¹²C (8hw): 1,061,255 hops

Using hops we can build arbitrary operations : 1-body jumps, 2-body jumps, 3-body jumps, spectroscopic factors, etc, all using the same underlying structure. The technology of half-Slater determinants (or *haikus*) and hops are incorporated into BIGSTICK

- Speeds up basis generation by factor of 3x to 4x
- Speeds up construction of jumps by factor of 10x
- Will allow natural method to compute spectroscopic factors (in progress)

CONCLUSIONS

Basic problem: find extremal eigenvalues of very large, very sparse Hermitian matrix

Lanczos algorithm

fundamental operation is *matrix-vector multiply*

Despite sparsity, nonzero matrix elements can require TB of storage

Only a fraction of matrix elements are unique; **most are reused.** Reuse of matrix elements understood through *spectator* particles.

Reuse can be **exploited using exact factorization** enforced through *additive/multiplicative quantum numbers*