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THE BASIC PROBLEM

The basic science question is to model detailed quantum structure of
many-body systems, such the electronic structure of an atom,
or structure of an atomic nucleus.

To answer this, we attempt to solve Schrédinger’s

equation:
)

2—%V2 +U(r)+ Y V(F - F) R Ry ..) = EW

[ i<j

or

H W)= E|W)



THE BASIC PROBLEM

The basic science question is to model detailed quantum structure of
many-body systems, such the electronic structure of an atom,
or structure of an atomic nucleus.

This differential equation is too difficult to solve directly

Y-V 4+ U®r) + Y W(F 7. F...) = EW

so we use the matrix formalism

H W)= E|W)
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Nuclear Hamiltonian: H = E — V + E Vr Fis ]

l i<j

Solve by diagonalizing H in a basis of many-body states.
The many-body states are Slater determinants, or
anti-symmeterized products of single-particle wins.

The single-particle states are defined by
a single-particle potential U(r) (such as
harmonic oscillator or Hartree-Fock)

o

At this point one generally goes to occupation representation:

H=Ne¢aa +1 itata,a
oy Uit
ikl Maria Mayer
single- partlcle energles two-body matrix elements




When running a fermion shell model code (e.g. MFD,
BIGSTICK), one enters the following information:

——————— excluded
(1) The single-particle valence space =~ |~ — "~~~ ~
(such as sd or pf); assumes inert core ——@&———~| ¢ valence space
b
—0——0 -0
0008 CCO-CO-
(2) The many-body model space 0000 - inert core
(number of protons and 0-6--00—
neutrons, truncations, etc.) A EI
T%‘;{E Single Particle Energies Single Particle States
single-particle energiées & ] e — [P0 2152 1 o
1111 10 -1.4151000 10056
and 1111 2 1 -0.0665000
. | B S ——> -2.8842001
two-body matrix elements IR o s —_—
2111 2 1 -0.6142000 ¥
VJT(ab,Cd) 5:1 9 1 30 20337000 (0ds»)
2121 10 -6.5057998 —(0ds)
25 1t 24 1 11 1.0334001
2 1 -




Summary:
The Schrodinger eqn has become a matrix

eigenvalue equation
E H, vy =E,V,
2

One chooses a basis of approx10+ - 1070 states

Key pomt: Once a basis 1s chosen, the two-body mteraction 1s reduced to
integrals between single-particle states and 1s stored as a list of real numbers

(the two-body matrix elements)

A shell model program then computes the many-body matrix elements
from the two-body (and sometimes three—body) matrix elements and

solves for eigenvalues/vectors.



A PROBLEM....

Despite sparsity, nonzero matrix elements can require TB of storage

*°Fe >01 M 3:>Tb Spread nonzero matrix
L Np,=12 252 M 3.6Th elements over many
U Necl4 2200M 23T g TORE TEE
12 N__=6 32M 0.2Tb MFDn code
12c N,_=8 590M 5Tb
2 N,,=10  7800M 111 Th
160 N =6 26 M 0.14 Tb

max

%0 N__=8 990 M 9.7Tb

maXx



THE KEY IDEAS

Basic problem: find extremal eigenvalues of very large, very
sparse Hermitian matrix

> Lanczos algorithm

fundamental operation is matrix-vector multiply

Despite sparsity, nonzero matrix elements can require TB of storage

Only a fraction of matrix elements are unique; most are reused.
Reuse of matrix elements understood through spectator particles.

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers
The algorithms described today are best applied to many body systems with

(a)two “species” (protons and neutrons, or +1/2 and -1/2 electrons)
(b)single-particle basis states with good rotational symmetry (j, m)



THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix

> Lanczos algorithm

fundamental operation is matrix-vector multiply

we use the matrix formalism

H W)= E|W)
W)= Yca)  Hy =(aH|B)

zHaﬁcﬁ = FEc_ if <0“/3> = 5a/3
p




THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix

| > Lanczos algorithm

fundamental operation is matrix-vector multiply

Hp = <O“ﬁ‘ﬁ>

* H is generally a very large matrix — dimensions up to
101% have been tackled.

* H is generally very sparse (in M-scheme).

* We usually only want a few low-lying states

, Lanczos algorithm!
(or variant, e.g. LOBPCQG)
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THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix

| > Lanczos algorithm
fundamental operation is matrix-vector multiply

Standard algorithm to obtain all eigenvalues of a real, symmetric
matrix A: Householder

Find orthogonal matrix U such that UT A U = B, a tridiagonal matrix

The Lanczos algorithm 1s similar, in that it also uses an orthogonal
matrix to take A to a tridiagonal matrix B.....

Lanczos algorithm!

11



THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix
| > Lanczos algorithm

fundamental operation is matrix-vector multiply

A‘71 = al‘_;l + /3)1‘72
A‘_;z = /51‘71 + O‘z‘_;z + /3)2‘73
A‘_;3 = /3)2‘72 T 053\73 + /33‘74

A‘74 ﬁ3‘73 + OC4\74 + ﬁ4‘75

Lanczos algorithm!
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THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix

| > Lanczos algorithm

fundamental operation is matrix-vector multiply

:A‘_;z = /51‘71 + O‘z‘_;z + ﬁz‘_;s

| — | — — —

AV, = Py, +asv, + Py,

| - | — — —
Av, 1= psvs+o,v, + [,V

L = = =

matrix-vector multiply
Lanczos algorithm!
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

I need to quickly cover:

* How the basis states are represented

* How the Hamiltonian operator is represented
* Why most matrix elements are zero

* Typical dimensions and sparsity

14



A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

* How the basis states are represented

This differential equation is too difficult to solve directly
2

E—ﬂvz +Ur)+ Y V(F —?J->)‘P<ff;fzf3...> - EW

i i<j

Can only really solve 1D differential equation
nod’
(_ 2m dr’

+ U(F))¢Z(F) = €i¢i(l’)
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

* How the basis states are represented

Can only really solve 1D differential equation
( n o d

e + U(r))qﬁi(’”) =£,0,(r) :> {gbz(?)}

Single-particle wave functions labeled by, e.g., n,j, [, m
Atomic case: 1s, 2s, 2p, 3s, 3p, 3d etc

Nuclear: 0sy/, 0P, 0py/9, 0d5/9, 1819, Odg, etc
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

* How the basis states are represented

Product wavefunction (“Slater Determinant”)
W 7y ) =ty (F )y )y (7). iy (7

Each many-body state can be uniquely determined
by a list of “occupied” single-particle states
= “occupation representation”

‘OC>=CZ a d ...d

ny ny, nj ny

0)
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

* How the Hamiltonian 1s represented

“occupation representation” ‘(x> = &; 2122 21;3 ... &;N O>
n, 1 2 3 4 5 6 /
a=1 |1 0 0 1 1 0 1
a=2 |1 0 1 0 0 1 1
a=3 |0 1 1 1 0 1 0

18



A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

* How the Hamiltonian 1s represented

some technical details:

the “M-scheme”

1 1 0 (S) 0
2 2 0 (S) 0
3 2 1(P) 1
4 2 1(P) 0
5 2 1(P) -1

A4t AN A} A 4
‘(x>=anlan2an3...a 0)

ny

For any Slater determinant,
the total M = sum of the m; s

Because J, commutes with H,

we can use a basis with M fixed
= “M-scheme”
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

* How the Hamiltonian 1s represented

some technical details:

the “M-scheme”

1 1 0 (S) 0
2 2 0 (S) 0
3 2 1(P) 1
4 2 1(P) 0
5 2 1(P) -1

A + A + A + A +
o) = a,a,da, ..a, 0)
If I have two species (spin up/down)
then combined M must be fixed:

e.g. 4 electrons, M = 0, + parity

spin up: states 1 + 2 (1S, _)(2S,,-¢)
spin down: 3 +5 (2P_,-,)(2P,- ;)

or

spin up: states 1 + 3 (1S,)(2P,,-1)
spin down: states 2, 5 (2S,,_,)(2P,- 1)

20



A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

* How the Hamiltonian 1s represented

“occupation representation” ‘(x> = El; 2122 21;3 ... &;N O>
n, 1 2 3 4 5 6 /
a=1 |1 0 0 1 1 0 1
a=2 |1 0 1 0 0 1 1
a=3 |0 1 1 1 0 1 0
H = ETZJG;CZ]- + %ijkla;—a;alak
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

* How the Hamiltonian 1s represented

“occupation representation” ‘a> —a a a ...a O>
ny ny N, ny

n, |1 2 4 5 6 7

a=1 |1 0 0 1. |0 1

a=2 |1 |0 |[1*¥ |o |o ™M |1

a=3 |0 1 1 1 0

aata,aga=1)=|a=2)
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

* How the Hamiltonian 1s represented

“occupation representation” ‘a> = &; 21; 21; . 21; O>
1 N

n, |1 2 3 4 5 6 7

a=1 |1 0 0 1 1 0 1

a=2 |1 0 1 0 0 1

a=3 |0 1 1 1 0 1 0

a2a4ala7‘a 2> = ‘a = 3>

23



A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

* Why most matrix elements are zero

“occupation representation” ‘(x> = El; 2122 21;3 ... &;N O>
n, 1 2 3 4 5 6 /
a=1 |1y |0 0 1 1 0 )1
( o=2 |1 \Jo |1 |o flo |1 / 1
a=3 |0 1 1 1" o 1" o

ANEANFAELA A A _ _ — need 3 particles to
a,d,desd,dsd; ‘ x 1> ‘ a 3> interact simultaneously!

24



A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

 Typical dimensions and sparsity

Nuclide | valence Valence Valence ba51s sparsity
space (%)
‘

2)Ne 2

Mg “sd” 4 5 44,133 0.5
wCr  “pf” 4 5 6M 0.01
OFe “pf’ 6 10 500M 2x10*

/

This corresponds to 2 T'b of data!

25



RECYCLED MATRIX ELEMENTS

Only a fraction of matrix elements are unique; most are reused.
Reuse of matrix elements understood through spectator particles.

no |1 |2 [3 |4 |5 |6 |7 |8

a=1]1 |1 |1. |0 0o |0 _l1

=211 |1 |o ™1 [|1¢T0 |0 |oO
c a=30 |1 1\\0 0 1 0__11

=40 |1 |0 ™M |1€ 0 |0

=60 |0 |0 ™M |1€ 1 |0
0503 ad, 0 =1)=|a =2)

(04
a,a3a,ay|a =3) =|a=4) All of these have the same
o

) =]
=5) =] =6) matrix element: V4o

a,a:a,a,
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RECYCLED MATRIX ELEMENTS

Only a fraction of matrix elements are unique; most are reused.
Reuse of matrix elements understood through spectator particles.

# of nonzero matrix elements vs. # unique matrix elements

Nuclide | valence Valence Valence
spaee nonzero | unique
“

28Si 26 x 10° 3600
2Fe “pf’ 90 x 10 21,500

Atom space unique
Nnonzero

110x10% 521,000
B CVB2 1.4x10° 879,000
C CVBI1 260x10° 40,751

27



FACTORIZATION

Reuse can be exploited using exact factorization

enforced through additive/multiplicative quantum numbers

A quantum number is the eigenvalue of an operator

For composite systems, one can apply the operator to
each component separately:

O|W) = ( +0,+0, +.. )(\11’1>®\‘P2>®\‘I’3>®

Sometimes the total quantum number is a simple sum/product
as is the case for J, or parity....

jz“P>= ‘I’>=(m1+m2+m3+...)

...but in other cases the addition is complicated (e.g. for J?)

)
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FACTORIZATION

Reuse can be exploited using exact factorization

enforced through additive/multiplicative quantum numbers

I consider composite many-fermion systems,
in particular those with 2 major components
protons and neutrons
or
spin-up and spin-down electrons

‘qj>=‘q{>®‘qj2>

Each component itself is a Slater determinant which is
composed of many particles

J|W)=MW) M=M+M,
(2)

(1) (
M, =m" +m,

+m? + ...
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FACTORIZATION

Reuse can be exploited using exact factorization

enforced through additive/multiplicative quantum numbers

Because the M values are discrete integers or half-integers
(-3,-2,-1,0,1, 2, ...or-3/2,-1/2,+1/2, +3/2....)
we can organize the basis states in discrete sectors

Example: 2 protons, 4 neutrons, total M =0

M(v) = +4

M,(v) = +3

M, (v) = +2

30



FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

In fact, we can see an example of factorization here because
all proton Slater determinants in one M-sector must combine
with all the conjugate neutron Slater determinants

Example: 2 protons, 4 neutrons, total M =0

M,(v) = +4: 24 SDs

M,(v) = +3: 39 SDs

M,(v) = +2: 60 SDs

48 combined

156 combined

540 combined

31



FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

In fact, we can see an example of factorization here because
all proton Slater determinants in one M-sector must combine
with all the conjugate neutron Slater determinants

DSl | W)= 4 24sDs | 48 combinec

Vl> ”1>‘V1>
) v v
)X T P
V4> J72>“’2>
‘V24> ‘”1>‘V24>

‘J‘L’2>‘V24> 32



FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

Proton SDs

o o
L g

a)=|a, )x|a,)
Neutron SDs

Nuclide Basis dim

Example N = Z nuclei

L 4

o o
) 4 \ g v L g

“Ne 640 66

2Mg 28,503 495
283 93,710 924
Cr 1,963,461 4895

2Fe 109,954,620 38,760

%Ni 1,087,455,228 125,970

33
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FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

Factorization allows us to keep track of all basis states
without writing out every one explicitly
-- we only need to write down the proton/neutron components

The same trick can be applied to matrix-vector multiply

IA{ = %A + : + [{‘A
Move 2 protons; @ \

neutrons are
spectators

Move 2 neutrons;
protons are
spectators

Move 1 proton +
1 neutron;

rest are
spectators

34



FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

A\

Move 2 protons;

neutrons are Example: 2 protons, 4 neutrons, total M =0

spectators
RSl [ W)= 4:245Ds | 48 combined

There are potentially 48 x 48 matrix elements
But for H, ) at most 4 x 24 are nonzero
and we only have to look up 4 matrix elements

Advantage: we can store 98 matrix elements as 4 matrix elements
and avoid 2000+ zero matrix elements.

35



FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

DSl | W)= a24sDs | 48 combinec

Advantage: we can store 98 matrix elements as 4 matrix elements
and avoild 2000+ zero matrix elements.
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FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

M,_(v) = +4: 24 SDs

48 combined

v,)
)
T, 21 22 V4>

Vi)

v,)

S

pp

S

pp

pp

X =

pp

Hll"ﬂ;l ‘V1> + HIZ“TE2>‘V1>

)
70,)|Vi) = Hy| )| Vi) + Hyp|7,)[vy)
NVa) = Hy|m)|vy) + Hylm, )|v,)

”2>‘V2> le‘”1>“’2> + sz‘”2>“’2>

)|V,

<

pr‘”1>‘vz4> = Hll‘”1>“’24> + le‘”2>“’24>
pr‘”2>“’24> = H,|m,)|Vay )+ Hop| 7, )| V)

Advantage: we can store 98 matrix elements as 4 matrix elements
and avoid 2000+ zero matrix elements.
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FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

Comparison of nonzero matrix storage with factorization

C DT T

S6Fe 501 M 3500 Gb 0.72 Gb
Li N__ =12 252 M 3800 Gb 61 Gb
Li N__=14 1200 M 23 Tb 624 Gb
12c N__=6 32M 196 Gb 3.3 Gb
2 N__=8 590M 5000 Gb 65 Gb
12c N__ =10 7800M 111 Tb 1.4Tb
160 N, =6 26 M 142 Gb 3.0 Gb

max

0 N__=8 990 M 9700 Gb 130 Gb

max




PARALLEL IMPLEMENTATION

Factorization makes it easier to compute workload

and distribute across multiple nodes

length of sides =
information to be stored

4 )
Arfa = total # of operations We can compute the
length of number of operations
sides = without actually
information counting them!
to be stored
Vs /
Then we can ; Q\N‘
easily divide A ik
K &
the work across C®)
compute nodes /‘j

\_
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PARALLEL IMPLEMENTATION

Factorization makes it easier to compute workload
and distribute across multiple nodes

Fe52 on NERSC Franklin

dim = 109M
20 T T T T T I T I T

— idea
— = actual -~

15—

0 2000 4000 6000 8000 10000

40



SOME SHELL-MODEL CODES

Matrix storage:

Oak Ridge-Rochester (small matrices)

Glasgow-Los Alamos (M-scheme, stored on disk; introduced Lanczos)

OXBASH /Oxford-MSU (J-scheme, stored on disk)

CMSM / Central Michigan (M-scheme, stored on disk farm)

MSHELL64 (?) / Mizusaki et al

MFDn/ Iowa State (M-scheme, stored in RAM; plans for J-scheme,
SU(3)-scheme w/LSU)

Factorization:

ANTOINE Strasbourg (M-scheme; originator of factorization)
NATHAN Strasbourg (J-scheme)

EICODE (J-scheme)

NuShell/NuShellX (J-scheme)

KSHELL CNS U Tokyo (M-scheme Shimuzu; cf. arviv:1310.5431)
REDSTICK+BIGSTICK/ LSU-SDSU-Livermore




SOME SHELL-MODEL CODES

Other approaches:

“Shell-model Monte Carlo” (Koonin, Johnson, Ormand, Dean,

Alhassid, Langanke..) Rewrite as path integral, evaluate by Monte
Carlo

“Monte Carlo Shell-Model” (Otsuka et al) Sample basis from Monte
Carlo random walk over path integral

Importance truncation (R. Roth et al, a Darmstadt group): Truncate
basis using perturbation theory
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THE BIGSTICK CODE

Many-fermion code: 2" generation after REDSTICK code
(started in Baton Rouge, La.)

Arbitrary single-particle radial waveforms
Allows local or nonlocal two-body interaction
Applies to both nuclear and atomic cases

Runs on both desktop and parallel machines
--can run at least dimension 100M+ on desktop
(20 Lanczos 1terations 1n 300 CPU minutes)

20-30k lines of codes

Fortran 90 + MPI + OpenMP

Partially funded by SciDAC

Plans to run on 50,000-100,000 compute nodes
Plans to publish code 2015

43



SCIENCE APPLICATIONS:

- Benchmarking approximations:
-- J-projected Hartree-Fock (J. Staker)
-- Quartet approximation (N. Sandulescu)
-- Spin-cutoff parameterization for level densities (W. Spinella)

- Transition strength functions, e.g. Gamow-Teller
-- ¥ million transitions in sd shell for astro library (M. Bertolli)
-- Transitions from excited state/Axel-Brink (M. Schuster)
-- Isospin violation corrections to superallowed (Kruse & Ormand)
-- SRG-evolved operators (M. Schuster and S. Quaglioni)

« Spin-Orbit (LLS) analysis of wavefunctions



SCIENCE APPLICATION:
L-S decomposition of
nuclear wavefunctions



Spin-orbit dissection of nuclear wavefunctions
--look at fraction of total L or total S

Model
space

48C3 KB3G 90 % (Of ;)8 20% L =0
240y sd  USDB 91% (0d 5,)¢ (15 )2 34%L=0
20 sd  USDB 75% (0d )8 38% L=0
[8He P Cohen-Kurath 53 % (0p ;/,)* 96% L=0 ]
325 sd  USDB 29% (0d 5/,)'2 (15 ,)* 34%L=0
286 sd  USDB 21% (0d 5 )12 36% L =0
[ 12C p Cohen-Kurath 37% (0p 5,,)® 82%L=0 ]

This illustrates a (once) well-known fact: that L-S coupling is a better
approximation in the p-shell than j-j coupling.

46



decomposition of ab initio
p-shell wavefunctions

Why?

-- To see if this pattern holds for ab initio interactions
-- How well do phenomenological interactions match ab initio?

-- Crucially, we know the 3-body forces strongly affects

the spin-orbit force. Can we see this happen directly?
Note: In this talk I only give 2-body results. Need 3-body forces...

47



IQC

Phenomenological Cohen-Kurath force (1965) in Op shell
m-scheme dimension: 51

NCSM: N3LO chiral 2-body force SRG evolved™ to A = 2.0 fm™l, N =6, hw=22 MeV

m-scheme dimension: 35 million

20
—— e e Ce _f_/__ +
15F / 2 7
4 ————-_\_/_‘/:_h_‘_' ,”
s // /// ‘-\‘A"'“--‘“_‘- + -
o 4
2" — 2
:;)) 10_ ;// —
LL]" 8 O+ 7 2
5 ,)+ R —i= - 7
V4 q_’-““—\___‘_’ 2+
+
0_ O —————————— —————————— —0+ —_
Expt Cohen-Kurath NCSM

*code courtesy of P. Navratil,
any mistakes 1 using 1t are mine!
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And the (rotational) band played on...

fraction of wavefunction

0.8

e
o

=S
Y

12
C, state 21

L-decomposition

B8 C(ohen-Kurath
EE NCSM (A=2.0. Nmax = 6)

0.8

o
)

o
1=

fraction of wavefunction

=4
5

12

C, state O1 (gs.)

L-decomposition

B Cohen-Kurath —
[ NCSM (A=2.0. Nmax = 6)

12
C, state 4

1

L-decomposition

T T T
08+ B® Cohen-Kurath _
B NCSM (A=2.0, Nmax = 6)

o

So6H .
g
2

g | i
3
E

S04 -
e
2

g i
&

02 —

0 .| |
0 2 5 6
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fraction of wavefunction

0.7

0.6

o e o
w = wn

fraction of wavefunction

o
(353

0.1

12C, state O1 (gs.)

L-decomposition

T T

B C(Cohen-Kurath
NCSM (A=2.0. Nmax = 6)

C, state 0,

L-decomposition

BB C(ohen-Kurath
NCSM (A=2.0. Nmax = 6)

0.

fraction of wavefunction

fraction of wavefunction

0.

0.

12
C, state 2I

L-decomposition

8._

6_

4

B8 Cohen-Kurath

NCSM (A=2.0. Nmax = 6)

12
C, state 2,

L-decomposition

0.8 |

T T

B8 C(Cohen-Kurath
NCSM (A=2.0, Nmax = 6)




IOB

Phenomenological Cohen-Kurath m-scheme dimension: 84

NCSM: NSLO chiral 2-body force SRG evolved to A = 2.0 fm, N, =6, hw=22 MeV

m-scheme dimension: 12 million

3
. EmE . % 1
L b
o - i 0"
; B ™ i g 5 e -
Ei
W - y =
iy o :
N % 1+
o 3" 3
Expt Cohen-Kurath NCSM
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fraction of wavefunction

fraction of wavefunction

0.8

e
>

o
I

0.8

I
=

e
Y

IOB, state 31 (gs.)

L-decomposition

T I T I

F B Cohen-Kurath
B NCSM (A=2.0, Nmax = 6)

10
B, state 0]

L-decomposition

I I I

F B8 C(Cohen-Kurath
EE  NCSM (A=2.0, Nmax = 6)

fraction of wavefunction

0.8

0.6

0.4

fraction of wavefunction

10
B, state 11

L-decomposition

I I

BB (ohen-Kurath
NCSM (A=2.0. Nmax = 6)

2 3
L

10
B, state 1,

L-decomposition

EE Cohen-Kurath
B NCSM (A=2.0. Nmax = 6)




1B

Phenomenological Cohen-Kurath m-scheme dimension: 62

NCSM: NSLO chiral 2-body force SRG evolved to A = 2.0 fm, N, =6, hw=22 MeV

m-scheme dimension: 20 million

6
- 3/2° |
7)) S 1 " :

41— A\\\\ \\\\ =
I 32 ]

S T \ 5/2 -

s L ]

:.'-..:V'2 1/2 e —]
- R 1/2"

0 3/2 e 32
- Expt Cohen-Kurath NCSM |
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Advanced topic 1n factorization:
Even more divide and conquer!

(Con<ider (prn‘mn)
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Advanced topic in factorization:
Even more divide and conquer!
We can combine these half Slater determinants into a
“full” Slater determinant, in the same way that we
combined proton and neutron Slater determinants into
the final many-body basis.

Nuclide Basis dim  # pSDs _ # half Slater Determinants

20Nle 640 66 22
24Mg 28,503 495 57
285; 93,710 924 64
48Cr 1,963,461 4895 386
52Fe 109,954,620 38,760 848

°°Ni 1,087,455,228 125,970 1,013



Advanced topic in factorization:
Even more divide and conquer!

Sample numbers:

Nuclide Basisdim  # pSDs  # half Slater Determinants

2C (4hw) 11M 33,475 5448
12C (6hw) 32.6 M 381,159 40,247
12C (8hw) 594 M 29 M 232,553

160 (8hw) 996 M 5M 497,493



Advanced topic in factorization:
Even more divide and conquer!

Note that while all proton and neutron SDs have the same particle number,
we build SDs from half-SDs with differing # of particles (but the sum
is fixed—just another quantum number).

This leads to another innovation.

The fundamental operation on half-SDs is not jumps but “hops” which are
single-particle creation/annihilation.

This turns out to be natural, easy, and quick.



Half-SDs are generated recursively:

N, =0: 000000

N, =1: 100000 010000 001000 000100 ....

N, =2: 110000 011000 001100 000110 ....
101000 010100 001010 000101 ....

100100 010010 001001
100010 010001
100001



Each half-SD has a fixed number of destruction hops:
it takes only a very short search to find the final half-SD:

N, =0: 000000

N, =1: 100000 010000 001000 000100 ....

[~

N, =2: 110000 O\rlOOO 001100 000110 ....
101000 010100 001010 000101 ....
100100 010010 001001
100010 010001

100001
Finding all the creation hops 1s even easier,because

we just reverse the destruction hops:



Like the number of half-SDs, the number of hops is small

28Si: 192 hops
2Fe: 3820 hops

12C (6hw): 171,409 hops
2C (8hw): 1,061,255 hops

Using hops we can build arbitrary operations :
1-body jumps, 2-body jumps, 3-body jumps,
spectroscopic factors, etc, all using the same underlying structure.



The technology of half-Slater determinants (or saikus) and hops
are incorporated into BIGSTICK

» Speeds up basis generation by factor of 3x to 4x
« Speeds up construction of jumps by factor of 10x

« Will allow natural method to compute spectroscopic factors
(in progress)



CONCLUSIONS

Basic problem: find extremal eigenvalues of very large, very
sparse Hermitian matrix

Lanczos algorithm

fundamental operation is matrix-vector multiply

Despite sparsity, nonzero matrix elements can require TB of storage

Only a fraction of matrix elements are unique; most are reused.
Reuse of matrix elements understood through spectator particles.

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers
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