Nuclear Green's function Monte Carlo with chiral forces

Joel Lynn

Theoretical Division, Los Alamos National Laboratory

with A. Gezerlis, S. Gandolfi, J. Carlson, A. Schwenk, E. Epelbaum

Physics of exotic nuclei: Theoretical advances and challenges

Outline

1 Motivation

- Ab-initio calculations for nuclei
- Nuclear interactions
 - Phenomenology
 - Chiral Effective Field Theory

2 Results

- $A \leq 4$ binding energies
- $A \leq 4$ radii
- Perturbative calculations
- Distributions

3 Conclusion

- Summary
- Future work
- Acknowledgments

Ab-initio calculations for nuclei - Quantum Monte Carlo (QMC)

Nuclear structure methods: solving the many-body Schrödinger equation

 $H |\Psi\rangle = E |\Psi\rangle$.

Looks innocent, but "Nuclear physics is hard!" $2^A \binom{A}{Z}$ coupled differential equations in 3A - 3 variables. ¹²C: $\rightarrow 3$ 784 704 equations in 33 variables.

Green's function Monte Carlo (GFMC): propagate in imaginary time to project out the ground state.

$$|\Psi(t)\rangle = e^{-(H-E_T)t} |\Psi_T\rangle \Rightarrow \lim_{t \to \infty} |\Psi(t)\rangle \propto |\Psi_0\rangle.$$

 $Ab\mathchar`-nitio$ calculations for nuclei - QMC

The trial wave function is a symmetrized product of correlation operators acting on a Jastrow wave function.

Trial Wave Function $|\Psi_T\rangle = \left| \mathcal{S} \prod_{i \in i} (1 + U_{ij}) \right| |\Psi_J\rangle ,$ $U_{ij} = \sum_{n=2} u_p(r_{ij}) O_{ij}^p, \ |\Psi_J\rangle = \prod_{i < j} f_c(r_{ij}) |\Phi_A\rangle ,$ $|\Phi_4\rangle = \mathcal{A} |p\uparrow p\downarrow n\uparrow n\downarrow\rangle$ $|\Psi_T\rangle = \left| \mathcal{S}\prod_{i < i} (1 + u_{\sigma}(r_{ij})\boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j + u_{t\tau}(r_{ij})S_{ij}\boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j) \right| \prod_{i < i} f_c(r_{ij}) |\Phi_4\rangle$

Ab-initio calculations for nuclei - QMC

The wave function is imperfect: $\Psi_T = c_0 \Psi_0 + \sum_{i \neq 0} c_i \Psi_i$.

Propagate in imaginary time to project out the ground state Ψ_0 :

$$\Psi(t) = e^{-(H-E_T)t}\Psi_T = e^{-(E_0-E_T)t} \left[c_0\Psi_0 + \sum_{i\neq 0} c_i e^{-(E_i-E_0)t}\Psi_i \right]$$
$$\Rightarrow \lim_{t\to\infty} \Psi(t) \propto \Psi_0.$$

Ab-initio calculations for nuclei - QMC

A cartoon

х

4.93

0

0.2 0.4

0.6 0.8

t [1/E_{sep.}]

1 1.2 1.4

n=5 n=7

0.8

Ab-initio calculations for nuclei - QMC

-0.06

0

0.2

0.4

х

0.6

5

4.94

4.93

0

0.2 0.4

0.6 0.8

t [1/E_{sep.}]

1 1.2 1.4

n=3

n=5 n=7

0.8

Ab-initio calculations for nuclei - QMC

-0.04

-0.06

0

0.2

0.4

х

0.6

4.93

0

0.2 0.4

0.6 0.8

t [1/E_{sep.}]

1 1.2 1.4

n=7

0.8

0.6

0.4

х

Ab-initio calculations for nuclei - QMC

-0.06

0

0.2

4.94

4.93

0

0.2 0.4

0.6 0.8

t [1/E_{sep.}]

1 1.2 1.4

n=3

n=5 n=7

0.8

0.6

0.4

х

Ab-initio calculations for nuclei - QMC

-0.04

-0.06

0

0.2

4.94

4.93

0

0.2 0.4

0.6 0.8

t [1/E_{sep.}]

1 1.2 1.4

n=3

n=5 n=7

0.8

Ab-initio calculations for nuclei - QMC

-0.04

-0.06

0

0.2

х

0.4

0.6

4.94

4.93

0

0.2 0.4

0.6 0.8

t [1/E_{sep.}]

1 1.2 1.4

n=3

n=5 n=7

0.8

0.6

0.4

х

Ab-initio calculations for nuclei - QMC

-0.04

-0.06

0

0.2

Ab-initio calculations for nuclei - QMC

(Limitations)

A so-called "walker" consists of the 3A positions and $2^{A} \binom{A}{Z}$ spin-isospin states (in the charge basis). $^{12}C:\rightarrow$ Remember 3 784 704 spin-isospin states! However: Recall Stefano's talk.

We can calculate "mixed estimates": $\frac{\langle \Psi(t)|O|\Psi_T \rangle}{\langle \Psi(t)|\Psi_T \rangle}$

$$\langle O(t) \rangle = \frac{\langle \Psi(t) | O | \Psi(t) \rangle}{\langle \Psi(t) | \Psi(t) \rangle} \approx \langle O(t) \rangle_{\text{Mixed}} + [\langle O(t) \rangle_{\text{Mixed}} - \langle O \rangle_T].$$

Ab-initio calculations for nuclei - QMC

For ground-state energies, O = H, and [H, G] = 0:

$$\langle H \rangle_{\text{Mixed}} = \frac{\langle \Psi_T | e^{-(H-E_T)t/2} H e^{-(H-E_T)t/2} | \Psi_T \rangle}{\langle \Psi_T | e^{-(H-E_T)t/2} e^{-(H-E_T)t/2} | \Psi_T \rangle}, \qquad \lim_{t \to \infty} \langle H \rangle_{\text{Mixed}} = E_0.$$

Nuclear interactions - The Hamiltonian

$$H = \sum_{i=1}^{A} \frac{\mathbf{p}_{i}^{2}}{2m_{i}} + \sum_{i< j}^{A} v_{ij} + \sum_{i< j< k}^{A} V_{ijk} + \cdots$$

The focus of this talk is on the two-body interaction. Until recently, there were two broad choices for v_{ij} .

- Local, real-space, phenomenological: Argonne's v_{18}^1 informed by theory, phenomenology, and experiment (well tested and very successful).
- Non-local, momentum-space, effective field theory (EFT): N³LO² informed by chiral EFT and experiment (well liked and often used in basis-set methods, such as the no-core shell model).

¹R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C 51, 38 (1995).

²e.g. D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001 (2003)

Nuclear interactions - Argonne's v_{18}

Figure 1 : Many excellent results using Green's function Monte Carlo (GFMC) and phenomenological potentials. From http://www.phy.anl.gov/theory.

This is great! But... Until recently the nucleon-nucleon potentials used have been restricted to the phenomenological Argonne-Urbana/Illinois family of interactions.

- Chiral EFT is an expansion in powers of Q/Λ_b . $Q \sim m_{\pi} \sim 100$ MeV; $\Lambda_b \sim 800$ MeV.
- Long-range physics: given explicitly (no parameters to fit) by pion-exchanges.
- Short-range physics: parametrized through contact interactions with low-energy constants (LECs) fit to low-energy data.
- Many-body forces enter systematically and are related via the same LECs.

- Chiral EFT is an expansion in powers of Q/Λ_b . $Q \sim m_{\pi} \sim 100$ MeV; $\Lambda_b \sim 800$ MeV.
- Long-range physics: given explicitly (no parameters to fit) by pion-exchanges.
- Short-range physics: parametrized through contact interactions with low-energy constants (LECs) fit to low-energy data.
- Many-body forces enter systematically and are related via the same LECs.

- Chiral EFT is an expansion in powers of Q/Λ_b . $Q \sim m_{\pi} \sim 100$ MeV; $\Lambda_b \sim 800$ MeV.
- Long-range physics: given explicitly (no parameters to fit) by pion-exchanges.
- Short-range physics: parametrized through contact interactions with low-energy constants (LECs) fit to low-energy data.
- Many-body forces enter systematically and are related via the same LECs.

- Chiral EFT is an expansion in powers of Q/Λ_b . $Q \sim m_{\pi} \sim 100$ MeV; $\Lambda_b \sim 800$ MeV.
- Long-range physics: given explicitly (no parameters to fit) by pion-exchanges.
- Short-range physics: parametrized through contact interactions with low-energy constants (LECs) fit to low-energy data.
- Many-body forces enter systematically and are related via the same LECs.

- Chiral EFT is an expansion in powers of Q/Λ_b . $Q \sim m_{\pi} \sim 100$ MeV; $\Lambda_b \sim 800$ MeV.
- Long-range physics: given explicitly (no parameters to fit) by pion-exchanges.
- Short-range physics: parametrized through contact interactions with low-energy constants (LECs) fit to low-energy data.
- Many-body forces enter systematically and are related via the same LECs.

Nuclear interactions - Chiral EFT

Local construction possible up to $\rm N^2 LO.$

• Regulator:

$$\frac{f(p,p') = e^{-(p/A)^n} e^{-(p'/\Lambda)^n}}{f_{\text{long}}(r) = 1 - e^{-(r/R_0)^4}}.$$

- Choose contacts $\propto \mathbf{q}$.
- Long-range potential: $V(r) \supset V_C(r) + V_S(r)\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2,$ $V_C(r) \propto \int_{2m_{\pi}}^{\bar{\Lambda}} d\mu \mu e^{-\mu r} \rho_C(\mu),$ etc. SFR cutoff.

Nuclear interactions - Chiral EFT

Local chiral EFT potential $\sim a v_7$ potential

$$v_{ij} = \sum_{p=1}^{7} v_p(r_{ij}) O_{ij}^p + \sum_{p=15}^{18} v_p(r_{ij}) O_{ij}^p.$$

Charge-independent operators

$$O_{ij}^{p=1,14} = \left[1, \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j, S_{ij}, \mathbf{L} \cdot \mathbf{S}, \mathbf{L}^2, \mathbf{L}^2(\boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j), (\mathbf{L} \cdot \mathbf{S})^2\right] \otimes \left[1, \boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j\right].$$

Charge-independence-breaking operators

$$D_{ij}^{p=15,18} = [1, \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j, S_{ij}] \otimes T_{ij}, \text{ and } (\tau_{zi} + \tau_{zj}).$$

Tensor operators

$$S_{ij} = 3(\boldsymbol{\sigma}_i \cdot \hat{\mathbf{r}}_{ij})(\boldsymbol{\sigma}_j \cdot \hat{\mathbf{r}}_{ij}) - \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j, \ T_{ij} = 3\tau_{zi}\tau_{zj} - \boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j$$

Figure 2 : Phase shifts for the np potential. From A. Gezerlis et al. (2014) arXiv:1406.0454 [nucl-th]

A = 3 binding energies - $\langle H \rangle$

Figure 3 : 3 H binding energy at different chiral orders and cutoff values.

Figure 4 : 3 He binding energy at different chiral orders and cutoff values.

⁴He binding energies - $\langle H \rangle$

Figure 5 : ⁴He binding energy at different chiral orders and cutoff values.

⁴He binding energies - $\langle H \rangle$

Figure 5 : ⁴He binding energy at different chiral orders and cutoff values. SFR dependence weak.

Results

$$A = 3$$
 radii - $r_{pt.}^2 = r_{ch.}^2 - r_p^2 - \frac{N}{Z}r_n^2$

Figure 6 : 3 H radii at different chiral orders and cutoff values.

Figure 7 : 3 He radii at different chiral orders and cutoff values.

 $^4\mathrm{He}$ radii - $r^2_{\mathrm{pt.}}=r^2_{\mathrm{ch.}}-r^2_p-\frac{N}{Z}r^2_n$

Results

Figure 8 : ⁴He radii at different chiral orders and cutoff values.

Los Alamos

Results

Figure 9 : ⁴He binding energy at different chiral orders and cutoff values plus a first-order perturbative calculation of $\langle H_{\rm N^2 LO} \rangle$.

Results ²H perturbation

Hints from the deuteron.

- Write $H \to \langle k' J M_J L' S | H | k J M_J L S \rangle$.
- Diagonalize $\rightarrow \{\psi_D^{(i)}(r)\}.$
- Second- and third-order perturbation calculations possible.

Table 1 : Perturbation calculations for ²H with different cutoff values for R_0 .

Calculation	$E_b \ ({ m MeV})$		
	$R_0{=}1.0~{\rm fm}$	$R_0{=}1.1~{\rm fm}$	$R_0{=}1.2\mathrm{fm}$
$E_{0(\rm NLO)}^{(0)}$	-2.15	-2.16	-2.16
$E_{0(\rm NLO)}^{(0)} + V_{\rm pert.}^{(1)}$	-1.44	-1.80	-1.90
$E_{0(\rm NLO)}^{(0)} + V_{\rm pert.}^{(2)}$	-2.11	-2.17	-2.18
$E_{0(\rm NLO)}^{(0)} + V_{\rm pert.}^{(3)}$	-2.13	-2.18	-2.19
$E_{0(N^{2}LO)}^{(0)}$	-2.21	-2.21	-2.20

Los Alamos NATIONAL LABORATORY ST.1943

Results

Distributions - ${}^{4}\text{He}$

Proton distribution: $\rho_{1,p}(r) = \frac{1}{4\pi r^2} \langle \Psi | \sum_i \frac{1+\tau_z(i)}{2} \delta(r - |\mathbf{r}_i - \mathbf{R}_{c.m.}|) | \Psi \rangle.$

Figure 10 : ⁴He proton distribution at different chiral orders.

Distributions - ⁴He

Figure 11 : ⁴He two-body T = 1 distributions.

Results Distributions - ⁴He

Coulomb Sum Rule:
$$S_L(q) = 1 + \rho_{LL}(q) - Z |F_L(q)|^2;$$

 $\rho_{LL}(q) \propto \int d^3r j_0(qr) \rho_2^{(T=1)}(r).$

Figure 12 : (PRELIMINARY) Fourier transform of the two-body distributions.

Conclusion

- Nuclear structure calculations probe nuclear Hamiltonians.
 - Phenomenological potentials have been very successful but are perhaps unsatisfactory.
 - ▶ Chiral EFT potentials have a more direct connection to QCD, but until now, have been non-local.
- GFMC calculations of light nuclei are now possible with chiral EFT interactions.
- Binding energies at N²LO are reasonably similar to results for two-body-only phenomenological potentials.
- Radii show expected trends.
- The softest of the potentials with $R_0 = 1.2$ fm is more perturbative in the difference between N²LO and NLO.
- The high-momentum (short-range) behavior of chiral EFT interactions is distinct from the phenomenological interactions.

- \bullet Include 3-nucleon force which appears at N^2LO.
- Include 2-nucleon force at N³LO (which will be non-local).
- Extend to larger nuclei with $4 < A \leq 12$.
- Second-order perturbation calculation in GFMC.
- Study of, for example, Coulomb sum rule to probe possible consequences of different short-range behavior.

Status.

Include 3-nucleon force which appears at N²LO. (Work in progress with Ingo Tews of Darmstadt). Plan:

- Include the spin-isospin structures coming from chiral EFT. Done at the VMC level.
- Fit c_D and c_E .
- Calculate larger nuclei and light reactions.
- Work with Stefano to include these forces in AFDMC calculations of neutron matter (and nuclei).

Conclusion

Acknowledgments

Los Alamos National Laboratory: S. Gandolfi, J. Carlson University of Guelph: A. Gezerlis Technische Universität Darmstadt: A. Schwenk, I. Tews Universität Bochum: E. Epelbaum

