# Finite amplitude method in axial basis

ICNT workshop "Physics of exotic nuclei: Theoretical advances and challenges"

> Markus Kortelainen University of Jyväskylä



# Proper degrees of freedom



Skyrme energy density:

$$\begin{aligned} H_t^{even}(\mathbf{r}) &= C_t^{\rho} \rho_t^2 + C_t^{\tau} \rho_t \tau_t + C_t^{\Delta \rho} \rho_t \Delta \rho_t + C_t^{\nabla J} \rho_t \nabla \cdot \mathbf{J}_t + C_t^J J_t^2 \\ H_t^{odd}(\mathbf{r}) &= C_t^s s_t^2 + C_t^j \mathbf{j}_t^2 + C_t^{\Delta s} s_t \cdot \Delta s_t + C^{\nabla j} s_t \cdot \nabla \times \mathbf{j}_t + C^T s_t \cdot \mathbf{T}_t \\ C_t^{\rho} &= C_{t0}^{\rho} + C_{tD}^{\rho} \rho_0^{\gamma} , \quad C_t^s &= C_{t0}^s + C_{tD}^s \rho_0^{\gamma} , \quad t = 0,1 \end{aligned}$$

- •Skyrme EDF is constructed from densities and their derivatives, multiplied by coupling constants
- •Usually used in the framework of Hartree-Fock or Hartree-Fock-Bogoliubov theory
- •HFB equations solved self-consistently (iterative process)

HFB equations:

$$\begin{pmatrix} h-\lambda & \Delta \\ -\Delta^* & -h+\lambda \end{pmatrix} \begin{pmatrix} U_n \\ V_n \end{pmatrix} = \epsilon_n \begin{pmatrix} U_n \\ V_n \end{pmatrix}$$

$$h_{ij} = \frac{\partial E[\rho, \kappa]}{\partial \rho_{ij}} , \quad \Delta_{ij} = \frac{\partial E[\rho, \kappa]}{\partial \kappa_{ij}}$$



#### Linear response with matrix-QRPA

•QRPA traditionally formulated in the matrix form (MQRPA)

 $\begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \omega \begin{pmatrix} X \\ -Y \end{pmatrix}$ 

Dimension of matrices A and B increases rapidly when basis size is increased
Dimensions of MQRPA matrices usually reduced by introducing a cut-off parameter v<sub>crit</sub> for the occupation of canonical states





 $\Rightarrow$  Iterative QRPA method required!

# History of FAM-QRPA briefly

•FAM-QRPA method introduced in: T. Nakatsukasa, T. Inakura, K. Yabana, PRC 76, 024318 (2007)



# History of FAM-QRPA briefly (cont.)



•Implementation to HFBTHO: M. Stoitsov, M. Kortelainen, T. Nakatsukasa, C. Losa, and W. Nazarewicz, PRC 84, 041305(R) (2011), see details later •Discrete states with FAM: N. Hinohara, M. Kortelainen, W. Nazarewicz, PRC C 87, 064309 (2013), **see talk by Nobuo Hinohara** 

# History of FAM-QRPA briefly (cont..)

FAM and relativistic mean field models

•Feasibility of the FAM with RMF models: H. Liang T. Nakatsukasa Z. Niu, J. Meng, PRC 87, 054310 (2013)

R (10<sup>3</sup> fm<sup>4</sup>/MeV)





#### History of FAM-QRPA briefly (cont...)

•Effect of pairing channel to the position of the centroid: P. Avogadro, C.A. Bertulani, PRC 88, 044319 (2013)

•Beta-decays with FAM: M. T. Mustonen, T. Shafer, Z. Zenginerler, J. Engel, arXiv:1405.0254 (2014)



## Finite amplitude method QRPA

FAM: T. Nakatsukasa, et. al., PRC 76, 024318 (2007)

1) Perform stationary HFB calculation

3) Time-dependent HFB equation now reads  

$$i\frac{d\,\delta\,\alpha_{\mu}(t)}{dt} = [H(t),\alpha_{\mu}(t)]$$

5) Polarize system with an external field F



2) Introduce time-dependent q.p. operator as  $\alpha_{\mu}(t) = (\alpha_{\mu} + \delta \alpha_{\mu}(t))e^{iE_{\mu}t}$ 

#### 4) Define oscillating part as

$$\delta \alpha_{\mu}(t) = \eta \sum_{\nu} \alpha_{\nu}^{+} (X_{\nu\mu} e^{-i\omega t} + Y_{\nu\mu}^{*} e^{+i\omega t})$$

Here  $\eta$  is small, and the amplitude of oscillation is also small

6) FAM equations then reads

$$\begin{split} & \left( E_{\mu} + E_{\nu} - \omega \right) X_{\mu\nu} + \delta H^{20}_{\mu\nu}(\omega) = F^{20}_{\mu\nu} \\ & \left( E_{\mu} + E_{\nu} + \omega \right) Y_{\mu\nu} + \delta H^{02}_{\mu\nu}(\omega) = F^{02}_{\mu\nu} \end{split}$$

# Solving FAM-QRPA equations



- •FAM equations are solved iteratively
- •A small imaginary width introduced:  $\omega \rightarrow \omega + \mathrm{i} \gamma$
- •Similarly as with HFB iterations, X and Y amplitudes eventually converge to solution
- •Broyden method essential for the FAM (uses history of previous iterations to speed-up convergence)



# Example of <sup>24</sup>Mg with FAM and MQRPA



- •FAM QRPA was implemented to axial HFBTHO code
- •Results with FAM and matrix-QRPA agree.
- •Results independent on expansion parameter  $\eta$ .

#### Monopole transition strength

M. Stoitsov, M. Kortelainen, T. Nakatsukasa, C. Losa, W. Nazarewicz, PRC 84, 041305(R) (2011)



#### Comparison to iterative Arnoldi diagonalization

FAM results can be compared to iterative Arnoldi diagonalization method (J. Toivanen, et. al., PRC 81, 034312 (2010))
A test case of <sup>126</sup>Sn agrees well



#### Discrete QRPA states with FAM



•Discrete QRPA states can be also accessed with FAM-QRPA

•Contour integration around the QRPA eigen-frequency, in complex plane, gives discrete QRPA amplitudes

# K≠0 modes with axial FAM-QRPA

- •Transition operator proportional to spherical harmonic  $\mathbf{Y}_{\text{LK}}$
- •K = 0 modes for E2 transitions can be calculated within the same block structure as the HFB
- •In spherical nucleus, due to the Wigner-Eckart theorem, all K modes give the same transition strength function
- •For deformed nuclei, all K modes needed
- •For  $K \neq 0$  modes, the transition operator has a different block structure than HFB
- •Need to explicitly linearize density dependent parts (expansion parameter  $\eta$  no longer needed)
- Implementation to HFBTHO

Matrix structure in axial basis for  $K \neq 0$  modes



In collaboration with N. Hinohara and W. Nazarewicz

#### E2 transition rates (spherical nucleus)



In collaboration with N. Hinohara and W. Nazarewicz

# Test case of <sup>24</sup>Mg



- •Current FAM implementation in HFBTHO, with K≠0 modes, lacks some of the time-odd EDF components (**s**.∇×**j** -term)
- •Test case of oblate deformed <sup>24</sup>Mg shows that this term has some impact

In collaboration with N. Hinohara and W. Nazarewicz

#### Testing spherical nuclei



In collaboration with N. Hinohara and W. Nazarewicz

### Testing spherical nuclei



In collaboration with N. Hinohara and W. Nazarewicz

#### Testing spherical nuclei



In collaboration with N. Hinohara and W. Nazarewicz

## Isoscalar quadrupole stregth in <sup>170</sup>Er

#### PRELIMINARY



In collaboration with N. Hinohara and W. Nazarewicz

# Parallelization of the FAM-QRPA



- •New K  $\neq$  0 mode code requires substantially more CPU time
- •MPI setup under construction, which would allow large scale surveys across the nuclear chart
- •Can be parallelized (rather) trivially

## **Conclusions & Outlook**

- •Implementation of  $K \neq 0$  modes into the HFBTHO currently in progress (one time-odd term still missing)
- •Computationally  $K \neq 0$  mode takes about two times more CPU time
- Another factor of ~2-8 to old FAM implementation, because densities are calculated from density matrices (instead of left-right method)
- •Missing time-odd terms needs to be implemented
- •Direct Coulomb may need some improvements: At the moment it is the largest source of discrepancy between K=0 and K=2 modes in spherical nuclei
- •Parallelization of the FAM module
- Magnetic transitions
- •Novel EDFs and FAM?