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Skyrme energy-density functional (EDF) approach
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Skyrme energy density:
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T-odd densities vanish in g.s of e-e nuclei
T-odd Skyrme energy density is not well constrained,

but plays a role in studying compact star
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EoS of polarized neutron matter:

isovector components

 T-odd components
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T-odd energy density seen in nuclear responses

Collective motion is generated by the residual interaction

spin density spin excitation modes
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Nuclear response to the IV external field:
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Self-consistent Skyrme-EDF approach for spin-isospin 
excitations in superfluid systems

Gamow-Teller strength and the spin-isospin coupling constants of the Skyrme energy functional
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We investigate the effects of the spin-isospin channel of the Skyrme energy functional on predictions for
Gamow-Teller distributions and superdeformed rotational bands. We use the generalized Skyrme interaction
SkO! to describe even-even ground states and then analyze the effects of time-odd spin-isospin couplings, first
term by term and then together via linear regression. Some terms affect the strength and energy of the
Gamow-Teller resonance in finite nuclei without altering the Landau parameter g0! that to leading order
determines spin-isospin properties of nuclear matter. Though the existing data are not sufficient to uniquely
determine all the spin-isospin couplings, we are able to fit them locally. Altering these coupling constants does
not change the quality with which the Skyrme functional describes rotational bands.

DOI: 10.1103/PhysRevC.65.054322 PACS number!s": 21.30.Fe, 21.60.Jz, 24.30.Cz

I. INTRODUCTION

Effective interactions for self-consistent nuclear structure
calculations are usually adjusted to reproduce ground-state
properties in even-even nuclei #1$. These properties depend
only on terms in the corresponding energy functional that are
bilinear in time-reversal-even !or ‘‘time-even’’" densities and
currents #2$. But the functional also contains an equal num-
ber of terms bilinear in time-odd densities and currents !see
Refs. #2,3$, and references quoted therein", and these terms
are seldom independently adjusted to experimental data. !For
the sake simplicity we refer below to terms in the functional
as time even or time odd, even though strictly speaking we
mean the densities and currents on which they depend." The
time odd terms can be important as soon as time-reversal
symmetry !and with it Kramers degeneracy" is broken in the
intrinsic frame of the nucleus. Such breaking obviously oc-
curs for rotating nuclei, in which the current and spin-orbit
time-odd channels !linked to time-even channels by the
gauge symmetry" play an important role. Time-odd terms
also interfere with pairing correlations in the masses of odd-
A and odd-odd nuclei #4–6$ and contribute to single-particle
energies #7–9$ and magnetic moments #10$. Finally, the spin-
isospin channel of the effective interaction determines distri-
butions of the Gamow-Teller !GT" strength.
The latter are the focus of this paper. We explore the

effects of time-odd couplings on GT resonance energies and
strengths, with an eye toward fixing the spin-isospin part of
the Skyrme interaction. As discussed in our previous study
#11$, there are many good reasons for looking at this channel
first. For instance, a better description of the GT response
should enable more reliable predictions for %-decay half-
lives of very neutron-rich nuclei. Those predictions in turn
may help us identify the astrophysical site of r-process nu-
cleosynthesis, which produces about half of the heavy nuclei
with A!70.
Our goal is an improved description of GT excitations in

a fully self-consistent mean-field model. To this end, we treat
excited states in the quasiparticle random phase approxima-
tion !QRPA", with the residual interaction taken from the
second derivative of the energy functional with respect to the
density matrix. This approach is equivalent to the small-
amplitude limit of time-dependent Hartree-Fock-Bogoliubov
!HFB" theory. We proceed by taking the time-odd coupling
constants in the Skyrme energy functional to be free param-
eters that we can fit to GT distributions. We then check that
the coupling constants so deduced do not spoil the descrip-
tion of superdeformed !SD" rotational bands.
Our formulation is nonrelativisitic. In relativistic mean-

field theory !RMF" #12,13$, the time-odd channels, referred
to as ‘‘nuclear magnetism,’’ are not independent from the
time-even ones because they arise from the small compo-
nents of the Dirac wave functions. For rotational states, the
time-odd effects have been extensively tested and shown to
be important for reproducing experimental data !see, e.g.,
Ref. #14$". Only the current terms and spin-orbit terms play a
role there, however, and the time-odd spin and spin-isospin
channels of the RMF have never been tested against experi-
mental data.
This paper is structured as follows. In Sec. II we review

properties of the Skyrme energy functional. Section III re-
views existing parametrizations of the functional, with par-
ticular emphasis on time-odd terms. Our main results are in
Sec. IV, where we present calculations of GT strength and
discuss the role played by the time-odd coupling constants.
Section V describes calculations of moments of inertia for
selected SD bands. Section VI contains our conclusions. We
supplement our results with six Appendices that provide
more detailed information on local densities and currents
!Appendix A", early parametrizations of time-odd Skyrme
functionals !Appendix B", the limit of the infinite nuclear
matter !Appendix C", Landau parameters of Skyrme func-
tionals !Appendix D" and of the Gogny force !Appendix E",
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Spin-isospin nuclear response using the existing microscopic Skyrme functionals

S. Fracasso and G. Colò
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Our paper aims at providing an answer to the question of whether one can reliably describe the properties of the
most important spin-isospin nuclear excitations by using the available nonrelativistic Skyrme energy functionals.
Our method, which has been introduced in a previous publication devoted to the isobaric analog states, is the
self-consistent quasiparticle random-phase approximation (QRPA). The inclusion of pairing is instrumental for
describing a number of experimentally measured spherical systems which are characterized by open shells. We
discuss the effect of isoscalar and isovector pairing correlations. Based on the results for the Gamow-Teller
resonance in 90Zr, 208Pb, and a few Sn isotopes, we draw definite conclusions on the performance of different
Skyrme parametrizations, and we suggest improvements for future fits. We also use the spin-dipole resonance as
a benchmark of our statements.

DOI: 10.1103/PhysRevC.76.044307 PACS number(s): 21.10.Re, 21.10.Hw, 21.30.Fe, 21.60.Jz

I. INTRODUCTION

The special role played by the spin-isospin modes for the
detailed understanding of the structure of nuclei has been
pointed out over the past several decades. The subject has been
treated in review papers [1] and textbooks [2]. Spin-isospin
transitions can occur spontaneously in the case of β decay.
The simplest case is that of the Gamow-Teller (GT) transitions,
whose corresponding operator is

O⃗GT± =
A∑

i=1

σ⃗ (i)t±(i). (1)

This operator is associated with a model-independent sum
rule [3], namely, m0 ≡ m0(t−) − m0(t+) = 3(N − Z), where
m0(t±) is the total strength in the given channel. This sum rule
is commonly called the Ikeda sum rule. Since the early work of
K. Ikeda et al. [4], it has been indeed clear that in the limited
energy window accessible to the β− decay, only a limited
fraction of m0(t−) can be found. A collective state should be
expected at higher energy, and this Gamow-Teller resonance
(GTR) has been indeed detected in (p, n) experiments starting
from the mid-1970s [5]. Later, systematic (3He, t) experiments
characterized by much better energy resolution were also
performed. We should recall that in nuclei having neutron
excess, the Ikeda sum rule is exhausted almost entirely by
states in the t− channel, as the Pauli principle hinders the t+
excitations.

In medium-heavy nuclei, ranging from 90Zr to 208Pb, the
GTR is located somewhat above the isobaric analog resonance
(IAR) which fact is also well known from (p, n) and (3He, t)
experiments. This corresponds to the typical energy region of
the giant resonances, that is, 10–20 MeV (we refer here to
energies with respect to the ground state of the mother, or
target, nucleus). At the same time, the main GT peak(s) turns
out to exhaust only about 50% of the Ikeda sum rule in these
medium-heavy nuclei; this percentage becomes about 70% if
the whole strength in the neighboring energy region (i.e., below
≈20 MeV in the daughter, or final, nucleus) is collected [6].

The extraction of the strength from the measured cross sec-
tions is far from being straightforward. However, due to their

#L = 0 character, the GTR and IAR angular distributions
are strongly peaked at 0◦, and an approximate proportionality
between the zero-degree cross section and the strength has
been found under the hypothesis of high incident energy, zero
momentum transfer, and neglect of the noncentral components
of the projectile-target interaction [7].

The problem of the so-called missing GT strengh has
attracted the considerable attention of nuclear physicists. Some
theorists have speculated that part of the missing GT strength
should be found at very high excitation energy (≈300 MeV)
because of the coupling with the internal 1+ excitation of the
nucleon, i.e., the # isobar (1232 MeV): the reader can consult
the references quoted in Ref. [1]. Other calculations [8] have
shown that the usual coupling of the one particle-one hole
(1p-1h) configurations involved in the GTR with two particle-
two hole (2p-2h) configurations is able to shift strength outside
the range accessible to experiments and explains in a more
conventional fashion the missing strength. Experimentally,
from the multipole-decomposition analysis (MDA) of the
cross sections measured in the 90Zr(p, n) experiment at Ep =
295 MeV [9], it has been argued that 90% of the GT strength
can be recovered below 50 MeV excitation energy, leaving
little room for the coupling with the # isobar. However, part
of the analysis (for instance, the estimate of the isovector
monopole contribution) has been somehow questioned.

The coupling of simple 1p-1h configurations with more
complex ones and the high-lying GT strength are not the
issue of the present paper. Using the Skyrme Hamiltonian,
the GTR in 208Pb has been calculated beyond the simple
random-phase approximation (RPA), taking into account the
coupling with the continuum as well as with configurations
made up with a p-h pair coupled with a collective vibration
[10]. This calculation has been able to reproduce the values of
the branching ratios associated with the proton decay of the
GTR; at the same time, it has been shown that the position of
the main GT peak does not change too much with respect to
the simple RPA. In Figs. 4 and 5 of Ref. [10] one can see that
the peak is indeed shifted downward by a few hundred keV.
The calculations reported in Ref. [11] (also based on the
coupling with phonons) are much more phenomenological, but
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Large-scale calculations of the double-β decay of 76Ge, 130Te, 136Xe, and 150Nd in the deformed
self-consistent Skyrme quasiparticle random-phase approximation
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We use the axially deformed Skyrme quasiparticle random-phase approximation (QRPA) together with the
SkM∗ energy-density functional, both as originally presented and with the time-odd part adjusted to reproduce the
Gamow-Teller resonance energy in 208Pb, to calculate the matrix elements that govern the neutrinoless double-β
decay of 76Ge, 130Te, 136Xe, and 150Nd. Our matrix elements in 130Te and 136Xe are significantly smaller than
those of previous QRPA calculations, primarily because of the difference in pairing or deformation between the
initial and the final nuclei. In 76Ge and 150Nd, our results are similar to those of less computationally intensive
QRPA calculations. We suspect the 76Ge result, however, because we are forced to use a spherical ground state,
even though our mean-field theory indicates a deformed minimum.

DOI: 10.1103/PhysRevC.87.064302 PACS number(s): 21.60.Jz, 23.40.Hc

I. INTRODUCTION

Neutrinoless (0νββ) double-β decay can occur if neutrinos
are Majorana particles at a rate that depends on a weighted
average of neutrino masses (see Refs. [1,2] for reviews). The
experimental search for 0νββ is approaching sensitivity to
neutrino masses below 100 meV [3]. To extract a mass from
the results, however, or to set a reliable upper limit, will require
accurate values of the nuclear matrix elements that govern the
decay, matrix elements that cannot be measured and must,
therefore, be calculated. A number of theorists have attempted
the calculations by applying several distinct methods. Among
the most popular is the proton-neutron quasiparticle random
phase approximation (QRPA).

The QRPA can be carried out at various levels of sophistica-
tion. So far, with only a few exceptions [4–9], the mean fields
on which the QRPA is based have been spherical by fiat; most
of those that allow deformation have restricted themselves
to single-β decay or two-neutrino double-β (2νββ) decay.
And although many employ a kind of self-consistent QRPA
[10–12], only Ref. [13] has carried out the QRPA without the
use of an artificially inert core, and there, again, the calculation
(which was relativistic) was restricted to 2νββ decay. In none
of the calculations has the residual QRPA interaction ever
been fully consistent with that of an underlying Hartree-
Fock-Bogoliubov (HFB) calculation. Finally, even Ref. [13],
which treats all the nucleons as active, forces them to occupy
harmonic-oscillator levels rather than continuumlike states.
Here, we overcome all these limitations by allowing axially
symmetric deformation, by using a modern and well-tested
Skyrme functional for both the HFB mean-field calculation
and the QRPA that is based on it, by keeping all the nucleons
active, and by placing the nucleus inside a large cylindrical box
so that discretized versions of continuum states are available
up to high energy.

*mika.t.mustonen@unc.edu
†engelj@physics.unc.edu

In recent years, deformed Skyrme-QRPA calculations of
this type have been applied extensively to nuclear vibra-
tions (see, e.g., Refs. [14–18]) and will soon be applied to
single-β decay [19]. Our implementation, described in detail
below, is via a B-spline-based HFB code with the above-
mentioned cylindrical-box boundary conditions, followed by
the construction and diagonalization of the QRPA Hamiltonian
matrix in the basis of canonical two-quasiparticle states.
The calculations consume enough CPU hours to require a
supercomputer, and so we restrict ourselves to four isotopes—
76Ge, 130Te, 136Xe, and 150Nd—used in the some of the
most promising current or proposed experiments [20–28].
The deformation and pairing in the initial and final nuclei are
often quite different, and matrix elements can be suppressed
as a result [5]; our numbers depend crucially on the overlap
of intermediate-nucleus states created by exciting the initial
ground state with those created by exciting the final ground
state. The QRPA supplies only transition amplitudes and
so must be extended to obtain the overlap. Here, we will
apply a prescription like that in Ref. [5] while noting that
a well-justified and tractable expression is still lacking.

This article is organized as follows: Sec. II contains a brief
overview of the matrix elements that govern double-β decay
and of the Skyrme QRPA. Section III describes the details of
our computational implementation, and Sec. IV presents our
results. Section V is a conclusion.

II. DOUBLE-β DECAY AND THE QRPA

A. Decay operators

The lifetime for 0νββ decay, if there are no heavy particles
that mediate the decay, is

[
T 0ν

1/2

]−1 = G′0ν⟨mν⟩2|M ′0ν |2, (1)

where ⟨mν⟩2 is a weighted average of three neutrino masses,
G′0ν is a phase-space factor (recently recomputed in Ref. [29]),

064302-10556-2813/2013/87(6)/064302(9) ©2013 American Physical Society
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b decay rates for spherical neutron-rich r-process waiting-point nuclei are calculated within a fully self-
consistent quasiparticle random-phase approximation, formulated in the Hartree-Fock-Bogoliubov canonical
single-particle basis. The same Skyrme force is used everywhere in the calculation except in the proton-neutron
particle-particle channel, where a finite-range force is consistently employed. In all but the heaviest nuclei, the
resulting half-lives are usually shorter by factors of 2 to 5 than those of calculations that ignore the proton-
neutron particle-particle interaction. The shorter half-lives alter predictions for the abundance distribution of
r-process elements and for the time it takes to synthesize them. @S0556-2813~99!02107-X#
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I. INTRODUCTION

The astrophysical r-process @1–6#, which creates about
half of all nuclei with A.70, proceeds through very neutron-
rich and unstable isotopes produced by stellar explosions or
other violent events. The ultimate abundance of any stable
nuclide depends strongly on the b decay half-lives of its
neutron-rich progenitors. The solar elemental abundance dis-
tribution shows peaks near A580, 130, and 195, correspond-
ing to progenitors with closed neutron shells (N550, 82, and
126!. These relatively long-lived nuclei not only define the
abundance peaks but also restrict the amount of heavier ma-
terial that is synthesized. Understanding the important fea-
tures of the r-process therefore requires knowledge of life-
times of closed-shell semimagic nuclei far from stability. Of
course beta decay is only one of the processes that contribute
to r-process abundances; neutron capture and photodisinte-
gration also play important roles, as do the temperature, den-
sity, and initial neutron to seed ratio in the explosive envi-
ronment. But these other aspects are beyond the scope of this
article, which focuses on the crucial question of how to cal-
culate beta decay far from stability. At present, most of the
very neutron-rich nuclei are out of experimental reach, and
theory provides the only handle on their decay rates.
Precise theoretical estimates of beta-decay rates are hard

to make. Most of the strength associated with the b

2 decay
operator s

W
t1 lies in the Gamow-Teller ~GT! resonance, well

above decay threshold. The strength that actually contributes
to b decay is the small low-energy tail of the GT distribu-
tion. Calculated b decay rates can therefore vary over a wide
range without coming into conflict with sum rules, which for
other processes help reduce theoretical uncertainty. In addi-
tion, b decay lifetimes depend sensitively on nuclear binding
energies, and small errors in calculated Q

b

values can cause
large errors in predicted decay rates. These problems are
complicated enough to demand a coherent and systematic
approach to b decay. Here we make a first attempt at a
completely self-consistent calculation. Our goal, in spite of
the difficulties, is a reliable estimate of b decay rates in

important even-even semimagic nuclei lying on the r-process
path.
Special tools are needed to describe transitions to low-

lying excited states in weakly bound nuclei. Although large-
scale shell model calculations successfully describe the GT
strength distribution in medium-mass nuclei close to the val-
ley of b stability @7,8#, large configuration spaces and diffi-
culties with the continuum @9# make the approach hard to
apply along the r-process path. The continuum random phase
approximation @10,11# is often useful, but in very-weakly
bound nuclei pairing is important and a quasiparticle random
phase approximation ~QRPA! based on coordinate-space
Hartree-Fock-Bogoliubov ~HFB! theory is required. Surpris-
ingly little work has been done along these lines. Much more
common are global ~in that they attempt to describe all nu-
clei in the same framework! but non-self-consistent calcula-
tions @12–15# that substitute the Strutinsky method 1 BCS
for HFB, approximate the continuum by bound or
quasibound orbits, and use a schematic interaction
k(sW 1sW 2)(tW 1tW 2) in the QRPA. The work of Ref. @16#, which
successfully reproduced the half-lives of the nickel isotopes
and of 132Sn in the Tamm-Dancoff approximation, used self-
consistent single-particle energies and orbits but retained the
traditional schematic residual interaction. But like most of
the global calculations, this work did not include a proton-
neutron (pn) particle-particle interaction.
Borzov et al. @17,18# did use a more self-consistent

method in restricted regions of the nuclide chart. Their start-
ing point was an energy-density functional optimized for the
regions they considered, and a realistic interaction ~including
a zero-range pn particle-particle component! in the QRPA.
Their energy functional was spin-independent, however, and
so they did not obtain the residual interaction from the sec-
ond derivative of the functional, as required if the QRPA is
to represent the small amplitude limit of time-dependent
HFB ~this is what we mean by self-consistency in an HFB
1QRPA calculation!. Instead they chose a phenomenologi-
cal spin-dependent residual interaction @17#. In addition, they
neglected positive-energy single-particle states in the HFB
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The most prominent evidence of pairing correlation in nuclei
is found in the odd–even staggering in binding energies and the
gap in the excitation spectrum of even–even nuclei in contrast
to the compressed quasi-particle spectrum in odd-A nuclei [1–
3]. There are also dynamical effects of pairing correlations seen in
the moment of inertia associated with nuclear rotation and large
amplitude collective motion [3–5]. The Hartree–Fock (HF) + BCS
method and Hartree–Fock–Bogoliubov (HFB) method have been
commonly used to study the ground state properties of superfluid
nuclei in a broad mass region [6–9]. For the study of excited spec-
tra, quasi-particle random phase approximation (QRPA) has often
been adopted as a basic method [10–13].

The strong attraction between nucleons is the basic ingredient
for the pairing correlations. So far, the pairing interactions of like-
nucleons with the isovector spin-singlet (T = 1, S = 0) channel
has been mainly discussed. In fact, the attraction between pro-
tons and neutrons is even stronger in the isoscalar spin-triplet
(T = 0, S = 1) channel [14], which gives rise to the deuteron
bound state. However the role of T = 0 pairing is limited in nu-
clei because of large imbalance between neutron and proton num-
bers, and also the two-body spin–orbit interaction which breaks
the S = 1 pair more effectively than the S = 0 pair [4,15,16].

* Corresponding author at: Center for Mathematics and Physics, University of
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E-mail address: sagawa@u-aizu.ac.jp (H. Sagawa).

Nevertheless, the isoscalar pairing causes extra binding energies in
nuclei with N = Z and has been considered as one of the origins
of the Wigner energy [17].

Gamow–Teller (GT) states have been studied both experimen-
tally and theoretically intensively in the last three decades. Many
interesting nuclear structure information has been revealed by
these studies, for example, the quenching of sum rule strength [18]
and the role of GT strength in the astrophysical processes such as
neutrino–nucleus reactions [19]. Because of recent development of
modern radioactive beam accelerator, it becomes feasible to ob-
serve GT states in exotic nuclei near the proton and neutron drip
lines. Recently, the GT transition strength was studied in a N = Z
nucleus 56Ni which has an important impact on late stellar evo-
lution through electron capture and β decay [20]. Although the
collective GT state is mainly built of charge exchange particle–hole
excitations, the low-lying strength responsible for β decay involves
neutron–proton (np) particle–particle type excitations which could
be sensitive to the T = 0 pairing interaction [10,21]. Intuitively,
the low-energy GT excitations will be enhanced by the following
mechanism: the T = 1 pairing correlation provides partially occu-
pied proton and the neutron orbitals near the Fermi surface. These
orbitals will accept the additional proton excitations from the neu-
tron orbits with the same orbital l quantum number. Then, these
(np) pair interacts through the T = 0 pairing interaction and en-
hances GT strength. These physical mechanisms may implement
the super-allowed GT transition between the same multiplet mem-
bers of SU(4) symmetry in the spin–isospin space [2,22], which

0370-2693/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
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commonly used to study the ground state properties of superfluid
nuclei in a broad mass region [6–9]. For the study of excited spec-
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been adopted as a basic method [10–13].

The strong attraction between nucleons is the basic ingredient
for the pairing correlations. So far, the pairing interactions of like-
nucleons with the isovector spin-singlet (T = 1, S = 0) channel
has been mainly discussed. In fact, the attraction between pro-
tons and neutrons is even stronger in the isoscalar spin-triplet
(T = 0, S = 1) channel [14], which gives rise to the deuteron
bound state. However the role of T = 0 pairing is limited in nu-
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Nevertheless, the isoscalar pairing causes extra binding energies in
nuclei with N = Z and has been considered as one of the origins
of the Wigner energy [17].

Gamow–Teller (GT) states have been studied both experimen-
tally and theoretically intensively in the last three decades. Many
interesting nuclear structure information has been revealed by
these studies, for example, the quenching of sum rule strength [18]
and the role of GT strength in the astrophysical processes such as
neutrino–nucleus reactions [19]. Because of recent development of
modern radioactive beam accelerator, it becomes feasible to ob-
serve GT states in exotic nuclei near the proton and neutron drip
lines. Recently, the GT transition strength was studied in a N = Z
nucleus 56Ni which has an important impact on late stellar evo-
lution through electron capture and β decay [20]. Although the
collective GT state is mainly built of charge exchange particle–hole
excitations, the low-lying strength responsible for β decay involves
neutron–proton (np) particle–particle type excitations which could
be sensitive to the T = 0 pairing interaction [10,21]. Intuitively,
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mechanism: the T = 1 pairing correlation provides partially occu-
pied proton and the neutron orbitals near the Fermi surface. These
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Intermezzo  -constrained by ab-initio calculations-
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w/ density dependence
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FIG. 2. (Color online) The energy of the proton spin-up (top
panel) and spin-down (bottom panel) impurities in the units
of the Fermi energy of the spin-up neutrons. The red filled
squares are our QMC results with the NNLO

opt

. interaction.
The green solid lines are the results from second order per-
turbation theory. The black dashed lines are predictions from
various density functionals (see text).

reported in Ref. 14 using an s-wave interaction (fit to
the nn scattering length and e↵ective range). For exam-
ple, at kF = 0.4 fm�1, we get "n"/EF = �0.582± 0.002
while the GFMC calculation gives �0.589 ± 0.005. An
AFDMC calculation performed the Argonne v0

8

potential
gives �0.567± 0.006 at the same kF .

The impurity energies reported in Fig. 1 and later in
Fig. 2 were performed with N = 7 spin-up neutrons.
We have checked in selected cases that the di↵erence be-
tween the N = 7 and the N = 33 energies is about
1 � 2%. For example, for ⇢ = 0.04 fm�3 "n#/EF is
�0.6698 ± 0.0005 with N = 7 and is �0.664 ± 0.006
for N = 33, while for ⇢ = 0.06 fm�3 the corresponding
values are �0.6617 ± 0.0003 and �0.647 ± 0.004. With
N = 7 the size of the box, L, for the largest density we
consider in this work (⇢ = 0.06 fm�3) is about 4.9 fm.
This is about three times the characteristic range of the
nucleon-nucleon interaction given by the pion Compton
wavelength (⇡ 1.4 fm). At higher densities (⇢ � 0.16
fm�3) the corrections resulting from performing calcu-
lations with a finite number of particles is expected to
sizeable and it is customary to perform calculations with
larger particle number (N � 33, for each spin). However,
at the densities we are considering in this paper, the fi-
nite particle number corrections (even at N = 7) can
be reasonably expected to be smaller than, or at most
comparable to, the other sources of uncertainty (the non
inclusion of three body forces in the Hamiltonian or the
absence of triples in the wave function).

In Fig. (2) we plot the ratio of the energy of the proton
spin up/down impurity ("p"/#) and EF . The density de-
pendence of "p"/#/EF is rather weak. In fact, the QMC
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FIG. 3. (Color online) The di↵erence between the energies
of the proton spin-up and spin-down impurities in the units
of the Fermi energy of the spin-up neutrons. The red filled
squares are our QMC results with the chiral NNLO

opt

inter-
action. The green solid line is the prediction from second
order perturbation theory. The blue dot-dashed line is a fit
of the form : A� B

kF |as| �CkF re. The black dashed lines are

predictions from various density functionals (see text).

results for "p#/EF change by less than 2% (�0.681 <
"p#/EF < �0.666) when the density changes by more
than an order of magnitude (10�3 � 5⇥ 10�2). Interest-
ingly, this value is larger, in magnitude, than the corre-
sponding (theoretical) value for polaron energy in a fully
polarized unitary Fermi gas (⇡ �0.6) [17] by about 10%.
It is worth pointing out here that the singlet pn scattering
length is about 25% larger than the singlet nn scatter-
ing length. This weak density dependence of "p"/# is a
non-perturbative result. Calculations from second order
perturbation theory, also shown in the figure, predict a
much stronger density dependence for kF < 1.0 fm.
The EDF for uniform matter is usually parametrized

as
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0

= ⇢. In general, the coe�-
cients are all independent and should be fixed from avail-
able data. However, for EDFs derived from a Skyrme
force, there are additional relationships amongst the co-
e�cients and the number of indepedent coe�cients is
smaller. Usually the C⇢

t and Cs
t are assumed to have
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the form

C
(⇢/s)
t = C

(⇢/s)0
t + C

(⇢/s)⇢
t ⇢(�/�). (3)

The impurity energy can be calculated from the EDF
as

"⌧� =
@E
@⇢⌧�

����
⇢⌧�!0

, (4)

with ⌧� = {n #, p ", p #}. In Fig. (1) we also
show "n#/EF obtained from a wide cross-section of cur-
rently popular EDFs: SLy4 [18], SkM* [19], BSk21 [20],
SkP [21], SkO0 [22], SAMi [23], TOV-min [24] and
UNEDF-pol [14]. In Fig. 2, we show "p"/#/EF for a
smaller sub-section of the EDFs. This is done in order to
avoid over-crowding the figure. However, we would like
to note here that the three EDFs, which are plotted in
Fig. 2, provide a fair representation of the spread in the
predictions from the current EDFs; all the other EDFs
show very similar trends both qualitatively and quanti-
tatively.

None of the EDFs reproduce the QMC results satis-
factorily. This is even more evident in the case of the
proton spin-down impurity; whereas all the EDFs pre-
dict "p#/EF to be decreasing with kF , our QMC calcu-
lations predict a flat behavior. This is not unexpected
since the EDFs are usually fit to the experimental prop-
erties nuclear systems near saturation density and low
isospin polarization (stable nuclei), and many body cal-
culations of unpolarized neutron matter. On the basis of
our calculations we conclude that in order to account for
the correlations in the low density matter in the presence
of large spin and isospin polarization, qualitative changes

are warranted in the form of the EDFs.
The di↵erence "p" � "p# is a purely time-odd quantity.

From Eqs. (2) and (4) one can easily obtain the following
relation

"p" � "p#
EF

=
4m(Cs

0

� Cs
1

)

3⇡2~2 kF � 2m(CT
0

� CT
1

)

5⇡2~2 k3F . (5)

In Fig.(3) we compare the predictions from our QMC cal-
culations for ("p" � "p #)/EF with those from di↵erent
EDFs. It is clear that none of the EDFs correctly de-
scribe our results. The SkM* EDF reproduces the linear
part of our results reasonablly well. However, the SkM*
EDF does not perform any better than the other EDFs
for the individual "p"/#. Also, globally the SkM* EDF
fares significantly worse than the more modern EDFs in
describing experimental data for nuclei (e.g., masses).

Our results are well fit by the form

"p" � "p#
EF

= A� B

kF |as|
� CkF re (6)

with A = 0.17 ± 0.01, B = 1.4 ± 0.1 and C = 0.101 ±
0.001. We have used the values as = �23.75 fm and

re = 2.75 fm for the neutron-proton singlet scattering
length and e↵ective length, respectively. This form is
clearly reminscent of a dilute unitary Fermi gas.

Conclusion.— We have presented QMC calculations
with a chiral interaction for the impurities in low density
fully polarized neutron matter. The proton spin-down
impurity shows universal behaviour for a wide range of
densities. None of the state of the art EDFs describe
our microscopic calculations correctly. We showed that
the di↵erence between the proton impurity energies de-
pends only on the time-odd part of the EDF. We found
a simple functional form which fits our results for this
di↵erence, but is nevertheless qualitatively di↵erent from
what is predicted by the current functional forms used
in the EDFs. Our results provide new constraints for
consructing accurate density functionals.
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Self-consistent pnQRPA for spin-isospin excitations in 
deformed nuclei

variation w.r.t densities

“s.p.” hamiltonian and pair potential:

The coordinate-space Hartree-Fock-Bogoliubov eq. for ground states
J. Dobaczewski et al., NPA422(1984)103

starting point: Skyrme EDF

quasiparticle basis

The proton-neutron quasiparticle RPA eq. for excited states

Collective excitation = coherent superposition of 2qp excitations:

E =

∫
drH(r)

H = Hkin+HSkyrme+Hem

HSkyrme =
∑

t=0,1

t∑

t3=−t

(
Heven

tt3 +Hodd
tt3

)

Heven
tt3 = Cρ

t ρ
2
tt3 + C∆ρ

t ρtt3∆ρtt3 + Cτ
t ρtt3τtt3 + C∇J

t ρtt3 ∇ · Jtt3 + CJ
t

←→
J 2

tt3

Hodd
tt3 = Cs

t s
2
tt3+C∆s

t stt3 ·∆stt3+CT
t stt3 ·Ttt3+C∇s

t (∇·stt3)2+Cj
t j

2
tt3+C∇j

t stt3 ·∇×jtt3

Hodd
tt3

H
ρ0

= 24/3
(
3π2

2

)2/3 [ !2
2m

+
(
Cτ

0 + Cτ
1 + CT

0 + CT
1

)
ρ0

]
ρ2/30 +

(
Cρ

0 + Cρ
1 + Cs

0 + Cs
1

)
ρ0

vres(r1, r2) ≡
δ2E

δρ(r1)δρ(r2)
∫

drrLYLψ
†(rστ)⟨σ|σ|σ′⟩⟨τ |τ |τ ′⟩ψ(rσ′τ ′)

∫
drrLYLŝ1t

ŝ1t = ψ†(rστ)⟨σ|σ|σ′⟩⟨τ |τ t|τ ′⟩ψ(rσ′τ ′)

ρmax × zmax = 14.7 fm× 14.4 fm

∆ρ = ∆z = 0.6 fm

E2qp ≤ 60 MeV

S− − S+ = 10.06

∆ν = 0.00 MeV

∆π = 0.41 MeV

vT=1
pp (r, r′) =

1− Pσ

2

1 + Pτ

2
V0

[
1− 1

2

ρ00(r)

ρ0

]
δ(r − r′)

[HMF, T−] ̸= 0

Ô†
λ =

∑

αβ

Xλ
αβ â

†
α,ν â

†
β,π − Y λ

αβ âβ̄,πâᾱ,ν

2

[HMF, T−] ̸= 0

Ô†
λ =

∑

αβ

Xλ
αβ â

†
α,ν â

†
β,π − Y λ

αβ âβ̄,πâᾱ,ν

vres(r1, r2) =
δ2E

δρ1t3(r1)δρ1t3(r2)
τ 1 · τ 2 +

δ2E
δs1t3(r1)δs1t3(r2)

σ1 · σ2τ 1 · τ 2

3

residual interactions derived self-consistently :

[HMF, T−] ̸= 0

Ô†
λ =

∑

αβ

Xλ
αβ â

†
α,ν â

†
β,π − Y λ

αβ âβ̄,πâᾱ,ν

vres(r1, r2) =
δ2E

δρ1t3(r1)δρ1t3(r2)
τ 1 · τ 2 +

δ2E
δs1t3(r1)δs1t3(r2)

σ1 · σ2τ 1 · τ 2

E [ρ(r), ρ̃(r)]

3

[HMF, T−] ̸= 0

Ô†
λ =

∑

αβ

Xλ
αβ â

†
α,ν â

†
β,π − Y λ

αβ âβ̄,πâᾱ,ν

vres(r1, r2) =
δ2E

δρ1t3(r1)δρ1t3(r2)
τ 1 · τ 2 +

δ2E
δs1t3(r1)δs1t3(r2)

σ1 · σ2τ 1 · τ 2

E [ρ(r), ρ̃(r)]

hq =
δE
δρq

, h̃q =
δE
δρ̃q

3

[HMF, T−] ̸= 0

Ô†
λ =

∑

αβ

Xλ
αβ â

†
α,ν â

†
β,π − Y λ

αβ âβ̄,πâᾱ,ν

vres(r1, r2) =
δ2E

δρ1t3(r1)δρ1t3(r2)
τ 1 · τ 2 +

δ2E
δs1t3(r1)δs1t3(r2)

σ1 · σ2τ 1 · τ 2

E [ρ(r), ρ̃(r)]

hq =
δE
δρq

, h̃q =
δE
δρ̃q

q = ν, π

3
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The particle-hole part Eph depends primarily on the density
matrix rq(rWs ,rW8s8), while the pairing ~particle-particle! part
Epair depends primarily on the pairing density matrix
xq(rWs ,rW8s8) ~the index q denotes protons or neutrons!. The
coupling between r and x comes from the density-dependent
terms of the Skyrme and/or pairing interaction. Because the
nuclei we consider are so neutron-rich, we shall neglect pn
pairing in the HFB ground state ~see Sec. III!; as a result our
HFB wave function will be a product of proton and neutron
wave functions, and matrices of r and x will be block diag-
onal in q. Expressions defining the Skyrme and pairing en-
ergy functionals have been presented many times ~see, e.g.,
Refs. @29–32#!, and so are only briefly discussed here in
Secs. III A and III B.
The particle-hole, hq(rWs ,rW8s8), and particle-particle,

Dq(rWs ,rW8s8), mean fields are defined as the first derivatives
of the energy functional with respect to the corresponding
densities:

hq~rWs ,rW8s8!

5
dE

drq~rW8s8,rWs

!

, ~8!

Dq~rWs ,rW8s8!

5
dE

dxq~rW8s8,rWs

!

. ~9!

The residual interactions that enter the QRPA equations ~dis-
cussed in Sec. II C! are the corresponding second derivatives
of the energy functional. Rearrangement terms, which result
from the density dependence of the energy functional are
therefore included in both the HFB and the QRPA.
Variation of the energy functional ~7! with respect to the

densities leads to the coordinate-space HFB equations for
protons and neutrons @27#,

E d3r8
(

s8
S hq~rWs ,rW8s8!

Dq~rWs ,rW8s8!

Dq~rWs ,rW8s8!

2hq~rWs ,rW8s8!

D
3S f1~a ,rW8s8!

f2~a ,rW8s8!

D 5S Ea

1lq 0
0 E

a

2lq
D S f1~a ,rWs

!

f2~a ,rWs

!

D ,
~10!

where a enumerates the HFB quasiparticle eigenstates. The
two-component quasiparticle wave functions f1(a ,rW8s8)
and f2(a ,rW8s8) self-consistently define the densities:

rq~rWs ,rW8s8!

5
(

aPq
f2~a ,rW ,s

!

f2*~

a ,rW8,s8!

, ~11!

xq~rWs ,rW8s8!

5
(

aPq
f1~a ,rW ,s

!

f2*~

a ,rW8,s8!

. ~12!

The Lagrange multipliers lq—the Fermi energies of the neu-
trons and protons—are fixed by the particle-number condi-
tions

Nq5E d3r
(

s56
rq~rWs ,rWs

!

. ~13!

By working directly in the coordinate space we are able to
properly include unbound states, which, as we have re-
marked, become important near the neutron drip line. A par-
ticular virtue of our approach is the accurate representation
of the canonical single-particle basis, consisting of eigen-
states cqm

(rs) of the density matrix:

E d3r8
(

s8
rq~rs ,r8s8!

cqm

~

r8s8!

5vqm

2
cqm

~

rs
!

.

~14!

Canonical states form an infinite, discrete, and complete set
of localized wave functions @27,28#; they describe both the
bound states and the positive-energy single-particle con-
tinuum. The canonical basis is well defined for all particle-
bound nuclei, no matter how close they are to the drip line.
We use it in the next section to formulate the QRPA.

C. Proton-neutron QRPA

Although one can derive coordinate-space QRPA equa-
tions for the generalized density matrix @10,17,18#, here we
stick with the older representation in terms of a discrete
single-particle basis. The canonical HFB basis is ideal for
this purpose because it simplifies the HFB equations, so that
HFB 1 QRPA can be formulated in complete parallel with
BCS 1 QRPA ~described, e.g., in Ref. @33#!. The pn QRPA
equations take the form

S A B
2B 2A D S XY D 5EQRPAS XY D , ~15!

with matrices A and B defined as

Apn ,p8n85Ep ,p8dn ,n81En ,n8dp ,p81Ṽpn ,p8n8~upvnup8vn8
1vpunvp8un8!1Vpn ,p8n8~upunup8un8
1vpvnvp8vn8! ~16!

and

Bpn ,p8n85Ṽpn ,p8n8~vpunup8vn81upvnvp8un8!

2Vpn ,p8n8~upunvp8vn81vpvnup8un8!. ~17!

Here p, p8, and n , n8 denote proton and neutron quasiparti-
cle canonical states, Ṽ is the pn particle-hole interaction in
the 11 channel, obtained from the second derivative of en-
ergy functional E with respect to the proton and neutron den-
sities, and V is the corresponding particle-particle interaction,
obtained from the second derivative with respect to the pair-
ing densities. The X’s and Y ’s are the amplitudes for exciting
two-quasiparticle and two-quasihole states from the corre-
lated vacuum. The occupation amplitudes v i are the eigen-
values of the density matrix ~14!. Since the canonical HFB
basis does not diagonalize the HFB Hamiltonian ~10!, the
one-quasiparticle terms in Eq. ~16! have off-diagonal matrix
elements Ei , j . The presence of these terms is the only formal
difference between our QRPA equations and those based on
the BCS approximation. The localized canonical wave func-
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Refs. @29–32#!, and so are only briefly discussed here in
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Dq(rWs ,rW8s8), mean fields are defined as the first derivatives
of the energy functional with respect to the corresponding
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The residual interactions that enter the QRPA equations ~dis-
cussed in Sec. II C! are the corresponding second derivatives
of the energy functional. Rearrangement terms, which result
from the density dependence of the energy functional are
therefore included in both the HFB and the QRPA.
Variation of the energy functional ~7! with respect to the

densities leads to the coordinate-space HFB equations for
protons and neutrons @27#,
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where a enumerates the HFB quasiparticle eigenstates. The
two-component quasiparticle wave functions f1(a ,rW8s8)
and f2(a ,rW8s8) self-consistently define the densities:

rq~rWs ,rW8s8!

5
(

aPq
f2~a ,rW ,s

!

f2*~

a ,rW8,s8!

, ~11!

xq~rWs ,rW8s8!

5
(

aPq
f1~a ,rW ,s

!

f2*~

a ,rW8,s8!

. ~12!

The Lagrange multipliers lq—the Fermi energies of the neu-
trons and protons—are fixed by the particle-number condi-
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properly include unbound states, which, as we have re-
marked, become important near the neutron drip line. A par-
ticular virtue of our approach is the accurate representation
of the canonical single-particle basis, consisting of eigen-
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(rs) of the density matrix:
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Canonical states form an infinite, discrete, and complete set
of localized wave functions @27,28#; they describe both the
bound states and the positive-energy single-particle con-
tinuum. The canonical basis is well defined for all particle-
bound nuclei, no matter how close they are to the drip line.
We use it in the next section to formulate the QRPA.

C. Proton-neutron QRPA

Although one can derive coordinate-space QRPA equa-
tions for the generalized density matrix @10,17,18#, here we
stick with the older representation in terms of a discrete
single-particle basis. The canonical HFB basis is ideal for
this purpose because it simplifies the HFB equations, so that
HFB 1 QRPA can be formulated in complete parallel with
BCS 1 QRPA ~described, e.g., in Ref. @33#!. The pn QRPA
equations take the form
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2B 2A D S XY D 5EQRPAS XY D , ~15!

with matrices A and B defined as

Apn ,p8n85Ep ,p8dn ,n81En ,n8dp ,p81Ṽpn ,p8n8~upvnup8vn8
1vpunvp8un8!1Vpn ,p8n8~upunup8un8
1vpvnvp8vn8! ~16!

and

Bpn ,p8n85Ṽpn ,p8n8~vpunup8vn81upvnvp8un8!

2Vpn ,p8n8~upunvp8vn81vpvnup8un8!. ~17!

Here p, p8, and n , n8 denote proton and neutron quasiparti-
cle canonical states, Ṽ is the pn particle-hole interaction in
the 11 channel, obtained from the second derivative of en-
ergy functional E with respect to the proton and neutron den-
sities, and V is the corresponding particle-particle interaction,
obtained from the second derivative with respect to the pair-
ing densities. The X’s and Y ’s are the amplitudes for exciting
two-quasiparticle and two-quasihole states from the corre-
lated vacuum. The occupation amplitudes v i are the eigen-
values of the density matrix ~14!. Since the canonical HFB
basis does not diagonalize the HFB Hamiltonian ~10!, the
one-quasiparticle terms in Eq. ~16! have off-diagonal matrix
elements Ei , j . The presence of these terms is the only formal
difference between our QRPA equations and those based on
the BCS approximation. The localized canonical wave func-
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of the quasiparticle (qp) wave functions as

ψ̂
†
q (rσ ) =

∑

α

ϕ
q
1,α(rσ̄ )â†

α,q + ϕ
q∗
2,α(rσ )âα,q . (3)

The notation ϕ(rσ̄ ) is defined by ϕ(rσ̄ ) = −2σϕ(r − σ ).
Using the quasiparticle basis obtained as a self-consistent solution of the HFB equations (1), we

solve the pnQRPA equation

[Ĥ ′, Ô†
i ]|0⟩ = ωi Ô†

i |0⟩, (4)

with Ĥ ′ = Ĥ − λν N̂ν − λπ N̂π . The charge-changing QRPA phonon operators are defined as

Ô†
i =

∑

αβ

Xi
αβ â†

α,ν â†
β,π − Y i

αβ âβ̄,π âᾱ,ν, (5)

where âᾱ,q is a quasiparticle annihilation operator of the time-reversed state of α.
In the present calculation, we solve the pnQRPA equation (4) in the matrix formulation

∑

α′β ′

(
Aαβα′β ′ Bαβα′β ′
B∗αβα′β ′ A∗αβα′β ′

)(
Xi
α′β ′

Y i
α′β ′

)

= ωi

(
1 0
0 −1

)(
Xi
αβ

Y i
αβ

)

. (6)

Using the qp wave functions ϕ1(rσ ) and ϕ2(rσ ), the solutions of the coordinate-space HFB
equation (1), the matrix elements of (6) are written as

Aαβα′β ′ = (Eα + Eβ)δαα′δββ ′

+
∫

d1d2d1′d2′{ϕν1,α(r1σ̄1)ϕ
π
1,β(r2σ̄2)v̄pp(12; 1′2′)ϕν∗1,α′(r

′
1σ̄
′
1)ϕ

π∗
1,β ′(r

′
2σ̄
′
2)

+ ϕν2,α(r1σ1)ϕ
π
2,β(r2σ2)v̄pp(12; 1′2′)ϕν∗2,α′(r

′
1σ
′
1)ϕ

π∗
2,β ′(r

′
2σ
′
2)

+ ϕν1,α(r1σ̄1)ϕ
π∗
2,β ′(r2σ2)v̄ph(12; 1′2′)ϕπ2,β(r

′
1σ
′
1)ϕ

ν∗
1,α′(r

′
2σ̄
′
2)

+ ϕπ1,β(r1σ̄1)ϕ
ν∗
2,α′(r2σ2)v̄ph(12; 1′2′)ϕν2,α(r

′
1σ
′
1)ϕ

π∗
1,β ′(r

′
2σ̄
′
2)}, (7)

Bαβα′β ′ =
∫

d1d2d1′d2′{−ϕν1,α(r1σ̄1)ϕ
π
1,β(r2σ̄2)v̄pp(12; 1′2′)ϕν

2,ᾱ′
(r′1σ

′
1)ϕ

π
2,β̄ ′

(r′2σ
′
2)

− ϕν2,α(r1σ1)ϕ
π
2,β(r2σ2)v̄pp(12; 1′2′)ϕν

1,ᾱ′
(r′1σ̄

′
1)ϕ

π
1,β̄ ′

(r′2σ̄
′
2)

− ϕν1,α(r1σ̄1)ϕ
π
1,β̄ ′

(r2σ̄2)v̄ph(12; 1′2′)ϕπ2,β(r
′
1σ
′
1)ϕ

ν
2,ᾱ′

(r′2σ
′
2)

− ϕπ1,β(r1σ̄1)ϕ
ν
1,ᾱ′

(r2σ̄2)v̄ph(12; 1′2′)ϕν2,α(r
′
1σ
′
1)ϕ

π
2,β̄ ′

(r′2σ
′
2)}. (8)

Here, the time-reversed state is defined as

ϕī (rσ ) = −2σϕ∗i (r − σ ), (9)

and
∫

d1 stands for
∑
σ1

∫
dr1.
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Canonical basis and quasiparticle basis
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calculation cost ~ BCS-QRPA

calculation cost ~ 
4*BCS-QRPA

introduction of cutoff

introduction of cutoff
simply by the 2qp energy

pp(hh) and ph excitations are 
treated on the same footing

occupation probability



HFB cal. (64 CPUs)

Box size:

Cut-off:

QRPA cal. (512 CPUs)

Cut-off:

# of 2qp excitation: ~50,000

matrix elements: 590 core hours

diagonalization:  330 core hours

For each Kπ

QRPA for heavy axially-deformed nuclei with HPC

HFB Hamiltonian:	


block diagonal in Ωπ

distributed to cores

2D-numerical integration	


independent of each 2qp configuration

Matrix elements of A and B:

with the help of ScaLapack
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β-decay half-lives in neutron-rich Zr isotopes

KTUYþ GT2 model is shown in Fig. 4(b). It is noted that
the results display very little or even no systematic depen-
dence, and generally provide a better description of the
data across this mass region than the FRDMþ QRPA
model does. Below A ¼ 102, the KTUYþ GT2 calcula-
tion overestimates some of the experimental results by a
factor of about 2; however, it should be noted that the
magnitude of the experimental uncertainties of the half-
life for Kr isotopes is rather large. Figure 4(c) shows test
results of the FRDMþ GT2 model, rather than FRDMþ
QRPA, to extract differences in the treatment of the
!-strength functions. Much smaller deviations, predicted
by the FRDMþ GT2 model, suggest that the GT2 suc-
ceeds in capturing the essence of !-strength functions.
Figure 4(d) shows the difference between QFRDM

! and

QKTUY
! as a function of atomic number. A suppressed

odd-even staggering is clearly evident, but the FRDM
model predicts a Q! value of about 1 MeV less than that
of the KTUY model at A # 110. A small enhancement in
the FRDMþ GT2 predictions, by a factor of 2 or so around
A ¼ 110, may be explained by the underestimation of
Q! values in the FRDM calculation. The data suggest
that one of the main problems associated with !-decay
half-life predictions is related to uncertainties involved
with binding-energy calculations and!-strength functions.

As discussed by Möller et al. [1], the sum of the half-
lives of the r-process nuclei up to the midmass region, i.e.,
around A ¼ 130, determines the rate of r-matter flow at

N ¼ 82. Following this prescription, the relatively short
half-lives of the Zr and Nb isotopes deduced in the present
study suggest a further speeding up of the classical
r process, and shed light on the issue concerning the low
production rates of elements beyond the second r-process
peak. The results presented here also make an impact on
the abundances of nuclei at the second peak, since the peak
position and shape in the solar abundances around
A ¼ 110–140 can be reproduced better by decreasing the
half-life of the r-process nuclei by a factor of 2 to 3 [2].
In summary, the !-decay half-lives of the very neutron-

rich nuclides 97–100Kr, 97–102Rb, 100–105Sr, 103–108Y,
106–110Zr, 109–112Nb, 112–115Mo, and 115–117Tc, all of which
lie close to the astrophysical r-process path, have been
measured (for 18 nuclei) or their uncertainties have been
reduced significantly. The results suggest a systematic
enhancement of the !-decay rates of the Zr and Nb iso-
topes by a factor of 2 or more around A ¼ 110with respect
to the predictions of the FRDMþ QRPA model. The
results also indicate a shorter time scale for matter flow
from the r-process seeds to the heavy nuclei. More satis-
factory predictions of the half-lives from the KTUYþ
GT2 model, which employs larger Q! values, highlights

the importance of measuring the half-lives and masses of
very exotic nuclei, since such knowledge ultimately leads
to a decrease in the uncertainty of predicted nuclear abun-
dances around the second r-process peak.
This experiment was carried out at the RIBF operated by

RIKEN Nishina Center, RIKEN and CNS, University of
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FIG. 3 (color online). Neutron number dependence of !-decay
half-lives for (top) even-Z (a) Kr, (b) Sr, (c) Zr, and (d) Mo, and
(bottom) odd-Z (e) Rb, (f) Y, (g) Nb, and (h) Tc. Filled circles
and open triangles represent results from the present work and
previous studies, respectively. The respective solid and dotted
lines are predictions from the FRDMþ QRPAmodels, while the
dashed lines are from the KTUYþ GT2.
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mental values deduced in the present work. (d) The difference
between Q! values predicted by the FRDM and KTUY mass
formulas.
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KTUYþ GT2 model is shown in Fig. 4(b). It is noted that
the results display very little or even no systematic depen-
dence, and generally provide a better description of the
data across this mass region than the FRDMþ QRPA
model does. Below A ¼ 102, the KTUYþ GT2 calcula-
tion overestimates some of the experimental results by a
factor of about 2; however, it should be noted that the
magnitude of the experimental uncertainties of the half-
life for Kr isotopes is rather large. Figure 4(c) shows test
results of the FRDMþ GT2 model, rather than FRDMþ
QRPA, to extract differences in the treatment of the
!-strength functions. Much smaller deviations, predicted
by the FRDMþ GT2 model, suggest that the GT2 suc-
ceeds in capturing the essence of !-strength functions.
Figure 4(d) shows the difference between QFRDM

! and

QKTUY
! as a function of atomic number. A suppressed

odd-even staggering is clearly evident, but the FRDM
model predicts a Q! value of about 1 MeV less than that
of the KTUY model at A # 110. A small enhancement in
the FRDMþ GT2 predictions, by a factor of 2 or so around
A ¼ 110, may be explained by the underestimation of
Q! values in the FRDM calculation. The data suggest
that one of the main problems associated with !-decay
half-life predictions is related to uncertainties involved
with binding-energy calculations and!-strength functions.

As discussed by Möller et al. [1], the sum of the half-
lives of the r-process nuclei up to the midmass region, i.e.,
around A ¼ 130, determines the rate of r-matter flow at

N ¼ 82. Following this prescription, the relatively short
half-lives of the Zr and Nb isotopes deduced in the present
study suggest a further speeding up of the classical
r process, and shed light on the issue concerning the low
production rates of elements beyond the second r-process
peak. The results presented here also make an impact on
the abundances of nuclei at the second peak, since the peak
position and shape in the solar abundances around
A ¼ 110–140 can be reproduced better by decreasing the
half-life of the r-process nuclei by a factor of 2 to 3 [2].
In summary, the !-decay half-lives of the very neutron-

rich nuclides 97–100Kr, 97–102Rb, 100–105Sr, 103–108Y,
106–110Zr, 109–112Nb, 112–115Mo, and 115–117Tc, all of which
lie close to the astrophysical r-process path, have been
measured (for 18 nuclei) or their uncertainties have been
reduced significantly. The results suggest a systematic
enhancement of the !-decay rates of the Zr and Nb iso-
topes by a factor of 2 or more around A ¼ 110with respect
to the predictions of the FRDMþ QRPA model. The
results also indicate a shorter time scale for matter flow
from the r-process seeds to the heavy nuclei. More satis-
factory predictions of the half-lives from the KTUYþ
GT2 model, which employs larger Q! values, highlights

the importance of measuring the half-lives and masses of
very exotic nuclei, since such knowledge ultimately leads
to a decrease in the uncertainty of predicted nuclear abun-
dances around the second r-process peak.
This experiment was carried out at the RIBF operated by
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and open triangles represent results from the present work and
previous studies, respectively. The respective solid and dotted
lines are predictions from the FRDMþ QRPAmodels, while the
dashed lines are from the KTUYþ GT2.

0.1

1

10

Exp
1/2 / TFRDM+QRPA

1/2T

(a)

R
at

io

100 105 110 115

1

(b)

Exp
1/2 / TKTUY+GT2

1/2T
0.1

1

10
100 105 110 115

100 105 110 115
0.1

1

10
(c)

Exp
1/2 / TFRDM+GT2

1/2T

R
at

io

100 105 110 115

Kr

Rb

Sr

Y

Zr

Nb

Mo

Tc

(d)

KTUY
β - QFRDM

βQ

Mass A

)
Ve

M( 
β

Q
∆

-2

-1

0

1

FIG. 4 (color online). Mass number dependence of the ratio of
theoretical T1=2 values from (a) FRDMþ QRPA [16],
(b) KTUYþ GT2 [17,18], and (c) FRDMþ GT2, to the experi-
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between Q! values predicted by the FRDM and KTUY mass
formulas.
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short half-lives were measured 
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1. 背 景 
 陽子と中性子から構成される原子核は、球形やラグビーボール型に変形した形状など
様々な形状をとり、陽子数や中性子数に関する魔法数とも密接に関連しています。良く
知られているのが魔法数と球形の関係で、陽子数及び中性子数の一方もしくは両方が２、
８、２０、２８、４０、５０などの魔法数になると球形となります。変形した形状にお
いても、変形魔法数と呼ばれる魔法数が存在し、陽子数及び中性子数が変形魔法数にな
ると大きく変形した状態で安定化する事が知られています。 
 自然界に存在する安定なジルコニウム同位体 90Zr（ジルコニウム-９０）では、陽子
数４０と中性子数５０が魔法数であり、その形状は球形となります（図１）。90Zr に中
性子を１０個加えて中性子数を６０にすると、大変形領域に入って球形は急激に変化し、
さらに中性子を加えると中性子数６４まで緩やかに変形度が大きくなることが知られ 

 
図１ 原子核図表。横軸が中性子数、縦軸が陽子数。青線で囲まれた領域は大変形領域であり、
境界の点線部は推測である。赤２重線は、本研究によりジルコニウム（Zr）同位体に発見され
た中性子の変形魔法数６４である。黒２重線は魔法数（球形）を、緑２重線は Zr 同位体を表す。
紫の四角は元素合成の経路を示している。色付けされている領域は、β崩壊の半減期が測定さ
れている領域である。黒は安定な原子核で、青は半減期が長く、赤は短い。 
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The spin and parity of the parent nucleus 106
39 Y67 are

possibly 2þ or 3þ, because the ground states of 99;101Y
are indicated to have the same proton configuration,
5=2þ[422], as 101;103;105Nb [18–20] and the spin and parity
of 10841 Nb67 is suggested to be 2

þ or 3þ [21]. The 4þ1 and the
second 2þ (2þ2 ) states of

106Zr are likely to be populated in
the ! decay of 106Y by comparison with the population of
the 4þ1 and 2þ2 states of 108Mo in the ! decay of 108Nb [21].
If the 324 keV " ray is the transition to the 2þ1 state, the
excited-state energy is 477 keV. Since Eð2þ1 Þ of 106Zr is
slightly larger than that of 104Zr (Fig. 2), Eð4þ1 Þ is expected
to increase gradually and to be 450–500 keV. The energies
of the 4þ1 and 2þ2 states of 106Zr are predicted by using the
interacting boson model [22]. The parameters of the inter-
acting boson model are obtained from a least-squares fit to
the known level energies of 108Mo, 110Ru, and 112Pd along
the isotonic chain (N ¼ 66). The largest deviations be-
tween the experimental and theoretical Eð4þ1 Þ and Eð2þ2 Þ
are 34 keVand 76 keV, respectively. The Eð4þ1 Þ and Eð2þ2 Þ
of 106Zr are extrapolated to be 455 keV and 618 keV,
respectively. Therefore, the excited states at 477 keV and
607 keV were tentatively assigned as the 4þ1 and 2þ2 states
in 106Zr, respectively. The transition from the 2þ2 state to
the 2þ1 state is expected, but no "-ray peak at 455 keV was
observed due to the low statistics.

The " rays emitted from a new isomeric state of 108Zr
were observed within 4 #s after the implantation of 108Zr
as shown in Fig. 1(b). Five "-ray peaks at energies of 174,
279, 348, 478, and 606 keV were unambiguously mea-
sured. A half-life of 620% 150 ns was derived from the
sum of time spectra for these five " rays. Some low-
intensity "-ray peaks from the 108Zr isomer might not
have been identified, and no information on "-" coinci-
dences was obtained due to the low statistics. Nevertheless,
it can be estimated that the energy of the isomeric state
is likely more than 1 MeV. The ground-state band is
populated up to 4þ; thus, the spin is likely more than or

equal to 4. Before discussing possible structures of the
observed isomer, low-lying states of 108Zr are discussed.
If a spherical ground state would appear around 110Zr

due to the predicted N ¼ 70 subshell gap [7], then Eð2þ1 Þ
would have to suddenly increase and R4=2 drop to & 2.
However, Eð2þ1 Þ of 106Zr is similar to that of Zr isotopes
with A ¼ 100–104, which are well deformed with !2 ¼
0:355ð10Þ, 0.43(4), and 0.47(7) for A ¼ 100, 102, and 104,
respectively [4,5]. Because the "-ray energies of 174 and
348 keV in 108Zr are slightly larger than those of 152 and
324 keV in 106Zr and the relevant energies smoothly
change from 100Zr to 108Zr (Fig. 2), the 174 and 348 keV
" rays were tentatively assigned as the transitions from the
2þ1 state to the ground state and from the 4þ1 state to the 2þ1
state, respectively. R4=2 gradually changes with values of
2.57, 3.15, 3.25, 3.13, and 3.00 for A ¼ 100, 102, 104, 106,
and 108, respectively. Values of R4=2, which is close to 3.3
for a rigid rotor, indicate the rotational character of a
deformed nucleus. The ground state of 108Zr is most likely
as deformed as 106Zr. Therefore, the spherical subshell gap
at N ¼ 70 seems not to be large enough to change the
ground state of 108Zr to spherical shape.
The structural evolution around the neutron-rich Zr iso-

topes can be visualized using 1=Eð2þ1 Þ [14]. Figure 3 shows
1=Eð2þ1 Þ as a function of the neutron number. The values of
1=Eð2þ1 Þ suddenly increase at N ¼ 60 for Kr, Sr, Zr, and
Mo isotopes because of the onset of deformation. 1=Eð2þ1 Þ
reaches a maximum at N ¼ 64 for both Zr and Mo iso-
topes. Another remarkable behavior at N ¼ 64 has been
observed for Mo isotopes. Hua et al. observed a band
crossing due to the rotation alignment of an h11=2 neutron
pair [23]. The shift of the band crossing to higher rotational
frequency in 106Mo is interpreted as a consequence of the
deformed subshell closure at N ¼ 64. The maximum of
1=Eð2þ1 Þ at N ¼ 64 can also be interpreted as being due
to the deformed subshell closure at N ¼ 64 with !2 &
0:47ð7Þ [5] for 104Zr.
The r-process path between A ¼ 110 and A ¼ 125 may

be affected by the weakening of the spin-orbit force, which
is associated with the neutron skin [24]. The harmonic-
oscillator-like doubly magic nucleus of 110Zr [24] or the
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GT giant resonance
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GTGR: the need of self-consistency
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LM parameter:  
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self-consistency is required for a quantitative 
description of the GTGR



IV giant dipole resonance: Anti-analog GDR
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Figure 2: The difference in the excitation energy of the AGDR and the IAS for
the target nucleus 208Pb, calculated with the pn-RQRPA using five relativis-
tic effective interactions characterized by the symmetry energy at saturation
a4 = 30, 32, 34, 36 and 38 MeV (open squares), and the interaction DD-ME2
(a4 = 32.3 MeV) (star). The theoretical values E(AGDR)−E(IAS) are plot-
ted as a function of the corresponding ground-state neutron-skin thickness
∆Rpn, and compared with the experimental value.

where ∆ = E0 − E1 and σ0(σ1) is the cross section for S=0 (S=1) transfer.
They estimated the σ1/σ0 ratio by : σ1/σ0 ≈ (Ep(MeV )/55)2 [22] and ob-
tained the energy of the EAGDR−EIAS in 208Pb to be 11.0 ± 1.5 MeV, which
is completely different from any theoretical prediction [22].

In reality, the centroid of the dipole strength distribution is usually de-
termined by fitting the distribution by a Gaussian or a Lorentzian curve and
not calculated numerically. This makes a large difference in case of 124Sn
where the widths of the AGDR and the IVSGDR are very different, 3.6 MeV
[14] and 9 MeV [25], respectively.

In order to determine the energy shift of the AGDR peak at Ep = 45
MeV from the real peak energy, we simulated the mixing of the AGDR and
IVSGDR by using their real widths of 2.9 MeV and 8.9 MeV, their intensity
ratio as approximated by Austin et al. [22], and their energy difference of

7

A. Krasznahorkay, N. Paar, D. Vretenar, 
M.N.Harakeh, Phys. Scr. T154(2013)4018

linear relationship between the neutron-skin thickness and the AGDR energy

AGDR and neutron skin thickness

J.Yasuda, T.Wakasa et al., PTEP2013, 063D02



T=0 (S=1) pairing

if we have (a) T=1 pairing condensate(s)
✓affects the GT response

✓does not affect the gs properties in N>Z nuclei 

due to the coupling between the p-h and p-p excitations

we may see the effect in the low-lying states that are generated by 2qp 
excitations around the Fermi levels

a form of the interaction or an np-pairing EDF is seldom known

Take the simplest one;
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Ô†
λ =

∑

αβ

Xλ
αβ â
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the pairing strength determined to reproduce the β-decay half-life of 100Zr (7.1 s)



Low-lying GT states
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αβ âβ̄,πâᾱ,ν
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√
2

π[413]7/2⊗ ν[413]5/2

3
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✓T=0 pairing effective
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primarily due to a large Q-value
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Ô†
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αβ â
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†
β,π − Y λ

αβ âβ̄,πâᾱ,ν

vres(r1, r2) =
δ2E

δρ1t3(r1)δρ1t3(r2)
τ 1 · τ 2 +

δ2E
δs1t3(r1)δs1t3(r2)

σ1 · σ2τ 1 · τ 2

E [ρ(r), ρ̃(r)]

hq =
δE
δρq

, h̃q =
δE
δρ̃q

q = ν, π

β2,ν = 0.38

β2,π = 0.41

β2,ν = 0.39

β2,π = 0.43

vph(r1 r2) = N−1
0 [f ′

0τ1 · τ2 + g′0σ1 · σ2τ1 · τ2] δ(r1 − r2)

F̂ t3
1K =

∑

σ

∫
drrY1K ψ̂

†(rστ)⟨τ |τ t3 |τ ′⟩ψ̂(rστ ′)
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pp (r, r′) =
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2

1− Pτ

2
V0δ(r − r′)

|⟨π[Nn3Λ]Ω = Λ+ 1/2|t−σ+1|ν[Nn3Λ]Ω = Λ− 1/2⟩| =
√
2

π[413]7/2⊗ ν[413]5/2

Qβ− = ∆Mn−H +B(A,Z + 1)−B(A,Z)

≃ ∆Mn−H + λν − λπ − E0

E0 = min[Eν + Eπ]

3

cf. J. Engel et al., PRC60(1999)014302

approximate Q-value



Beta-decay half-lives with T=0 pairing
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pn-pair transfer strengths in N=Z nuclei in fp-shell
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SGII + surface pairing
V0 = -520 MeV fm3

Interactions employed for pn-pairing vibration in fp-shell nuclei

HFB eq:

pnQRPA eq:
p-h channel: SGII
p-p channel:

vT=0
pp (rστ, r′σ′τ ′)= f × V0

1 + Pσ

2

1− Pτ

2

[
1− ρ(r)

ρ0

]
δ(r − r′)

vT=1
pp (rστ, r′σ′τ ′)= V0

1− Pσ

2

1 + Pτ

2

[
1− ρ(r)

ρ0

]
δ(r − r′)

2

cf. C. Bai et al., PLB719(2013)116

44Ti	


Δn = 1.82 MeV	


Δp = 1.87 MeV
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FIG. 1: (Color online) pn pair-addition strengths of 40Ca →
42Sc and 56Ni → 58Cu in the Jπ = 1+ [(a), (b)] and Jπ = 0+

[(c), (d)] states smeared with a width of 0.1 MeV. For the
(J, T ) = (1, 0) channel, shown are the strengths obtained with
factors f = 0, 1.0, 1.3, and 1.5. For the (J, T ) = (0, 1) channel,
the unperturbed single-particle transition strengths are also
shown by a dotted line.

for the particle-hole (ph) channel because the spin-isospin
properties were considered to fix the coupling constants
entering in the EDF [14]. For the pp channel, the density-
dependent contact interactions are employed:

vT=0
pp (rστ, r′σ′τ ′)

= f × V0
1 + Pσ

2

1− Pτ

2

[
1− ρ(r)

ρ0

]
δ(r − r′), (1)

vT=1
pp (rστ, r′σ′τ ′)

= V0
1− Pσ

2

1 + Pτ

2

[
1− ρ(r)

ρ0

]
δ(r − r′), (2)

where ρ0 = 0.16 fm−3 and ρ(r) = ρν(r) + ρπ(r). The
pairing strength V0 is determined so as to produce ap-
proximately the T = 1 pairing gaps of the fp-shell nuclei
as 12/

√
A (MeV). The strength V0 = −520 MeV fm3

gives ∆ν = 1.82 MeV and ∆π = 1.87 MeV in 44Ti by
solving the SHF-Bogoliubov equation with an energy cut
off at 60 MeV. We assume that the T = 1 pairing inter-
action is rotationally invariant in isospace. The factor f
appearing in the T = 0 channel (1) is changed to see an
effect of the interaction [15], whereas an analysis made
in Ref. [7] suggests f ≃ 1.6 for the density-independent
contact interactions based on a phenomenological shell-
model Hamiltonian in the fp-shell nuclei.

Figure 1 shows the strength distributions for the
monopole (L = 0) pn-pair-addition transfer |⟨Z +1, N +
1;λ|P̂ †

T,S |Z,N⟩|2 ≡ |
∑

αβ M
T,S
αβ |2 as functions of the

RPA frequency ωλ in 40Ca and 56Ni. Here, the L = 0

TABLE I: Microscopic structure of the collective Jπ = 1+

and 0+ states in 42Sc calculated with f = 1.3. Listed are the
configuration, its excitation energy, and the matrix element.
The excitation energies are given in MeV. The pp and hh
excitations possessing the amplitude |X2 − Y 2| greater than
0.01 are only shown. Sums of the backward-going amplitudes
squared and the matrix elements are shown in the last lines.
For the Jπ = 1+ state, the Jz = 0 component is only shown.

42Sc Jπ = 1+ Jπ = 0+

configuration Eα + Eβ MS=1,Sz=0
αβ MS=0

αβ

π1f7/2 ⊗ ν1f7/2 7.5 1.70 2.85
π1f7/2 ⊗ ν1f5/2 15.2 0.62
π1f5/2 ⊗ ν1f7/2 14.7 0.51
π2p3/2 ⊗ ν2p3/2 16.1 0.17 0.22
π1d3/2 ⊗ ν1d3/2 4.2 0.25 0.48
π2s1/2 ⊗ ν2s1/2 6.6 0.25
π1d3/2 ⊗ ν1d5/2 10.1 0.32
π1d5/2 ⊗ ν1d3/2 10.2 0.32
π1d5/2 ⊗ ν1d5/2 16.1 0.16 0.31

∑
αβ Mαβ 6.63 5.70∑
ij Y

2
ij 0.17 0.09

T = 0 pn-pair-addition operators are defined as

P̂ †
T=0,S=1,Sz

=

1

2

∑

σσ′

∑

τ

∫
drψ̂†(rστ)⟨σ|σSz |σ′⟩ψ̂†(rσ̃′τ̃) (3)

and the L = 0 T = 1 pn-pair-addition operator as

P̂ †
T=1,Tz=0,S=0 =

1

2

∑

σ

∑

ττ ′

∫
drψ̂†(rστ)⟨τ |τ0|τ ′⟩ψ̂†(rσ̃τ̃ ′) (4)

in terms of the nucleon field operator, where ψ̂†(rσ̃τ̃) ≡
(−2σ)(−2τ)ψ̂†(r−σ− τ). Note that the absolute values
of the RPA frequency do not directly correspond to the
excitation energies observed experimentally. The parti-
cle excitation energies here are measured from the Fermi
energies; Eα = |ϵα − λ|. Since in the spatially spheri-
cal “normal” nuclei, the spin orientation is not uniquely
determined, i.e., rotationally invariant in spin space, the
strengths for the spin-triplet (S = 1) pair-addition trans-
fer (3) are all the same. Therefore, the strengths for
Sz = 0,±1 are summed up in Figs. 1(a) and 1(b).

One sees that the excitation energy and the strengths
of the Jπ = 1+ state are strongly affected by the T = 0
pairing interaction. In the case of f = 0, without the
T = 0 pairing interaction, the lowest 1+ state in 42Sc
located at ω = 7.5 MeV is a single-particle excitation
πf7/2 ⊗ νf7/2. As the pairing interaction is switched
on and the strength is increased, the 1+ state is shifted
lower in energy with an enhancement of the transition

f=1.3π[413]7/2⊗ ν[413]5/2

Qβ− = ∆Mn−H +B(A,Z + 1)−B(A,Z)

≃ ∆Mn−H + λν − λπ − E0

E0 = min[Eν + Eπ]

F̂ t3
K =

∑

σ,σ′

∫
drψ̂†(rστ)⟨σ|σK |σ′⟩⟨τ |τ t3 |τ ′⟩ψ̂(rσ′τ ′)

⟨λ|P̂ †
T,S |0⟩ =

∑

αβ

MT,S
αβ

4

Transition matrix element
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TABLE II: Same as Table I but for 58Cu.

58Cu Jπ = 1+ Jπ = 0+

configuration Eα + Eβ MS=1,Sz=0
αβ MS=0

αβ

π2p3/2 ⊗ ν2p3/2 4.5 1.28 1.90
π2p1/2 ⊗ ν2p3/2 6.4 0.39
π2p3/2 ⊗ ν2p1/2 6.5 0.37
π2p1/2 ⊗ ν2p1/2 7.9 0.26
π1f5/2 ⊗ ν1f5/2 9.7 0.15 0.55
π1f7/2 ⊗ ν1f7/2 5.1 0.17 0.50

∑
αβ Mαβ 4.25 4.68∑
ij Y

2
ij 0.03 0.03

strength. In Table I, the microscopic structure of the 1+

state obtained by setting f to 1.3 is summarized. This
1+ state is constructed by many pp excitations involv-
ing an f5/2 and a p3/2 orbitals located above the Fermi
levels as well as the πf7/2 ⊗ νf7/2 excitation. It is par-
ticularly worth noting that the hh excitations from the
sd-shell have an appreciable contribution to generate this
T = 0 pn-pair-addition vibrational mode, indicating a
40Ca core-breaking. Furthermore, all the pp and hh exci-
tations listed in the table construct the vibrational mode
in phase. The strong collectivity can be also seen from a
large amount of the ground-state correlation: A sum of
the backward-going amplitudes squared is 0.17
The low-lying 1+ state in 58Cu is also sensitive to the

T = 0 pairing interaction. As shown in Table II, this
mode is dominantly constructed by a πp3/2 ⊗ νp3/2 ex-
citation together with many other pp excitations involv-
ing a p1/2 and an f5/2 orbitals. In contrast to a large
core breaking in 42Sc, a role played by the hh excitation
πf7/2 ⊗ νf7/2 is minor in 58Cu.
In Figs. 1(c) and 1(d), the strength distributions for the

T = 1 pn-pair-addition transfer are shown together with
the strengths obtained without the residual interactions.
The low-lying 0+ state is predominantly constructed by
the πf7/2 ⊗ νf7/2 excitation in 42Sc similarly to the 1+

state. Though the number of possible pp configuration
in the bound states is smaller than in the T = 0 channel,
the energy shift due to the T = 1 pairing interaction is
large and the ground-state correlation is strong. The 0+

state in 58Cu is as collective as the 1+ state.
In an attempt to explore characteristic features of the

collective T = 0 pn-pairing vibration, we investigate the
pn pair-removal strengths in 40Ca and 56Ni. The strength
distributions for the pn-pair removal transfer are shown
in Fig. 2. Similarly to the T = 0 pn-pair-addition vibra-
tion, the frequency and the transition strengths to the
low-lying 1+ state strongly depend on the strength of the
T = 0 pairing interaction, in particular, for 40Ca → 38K.
In the case of f = 1.3, the 1+ state is mainly generated
by a πd3/2 ⊗ νd3/2 excitation with a matrix element of

FIG. 2: (Color online) Same as Fig. 1 but for the pn pair-
removal strengths.

FIG. 3: (Color online) (a) Energy difference ∆E = ω1+ −ω0+

in 38K, 42Sc, 54Co and 58Cu calculated with f = 0, 1.0, 1.3,
and 1.5. (b) Ratio of the energy difference calculated to the
experimental value ∆E/∆Eexp. The experimental data are
taken from Ref. [16]. Lines are drawn to guide the eye. A
horizontal line represents unity.

0.82. Furthermore, many other hh excitation participate
to generate this T = 0 pn-pair-removal vibrational mode:
they are πs1/2 ⊗ νs1/2 (with M = 0.07), πd5/2 ⊗ νd3/2
(0.30), πd3/2⊗νd5/2 (0.30), πd5/2⊗νd5/2 (0.16) together
with the pp excitation of πf7/2 ⊗ νf7/2 (0.39). We see a
coherence among the hh and pp excitations, and a strong
ground-state correlation:

∑
mn Y

2
mn = 0.11.

A change of the excitation energy due to the T = 0
pairing interaction is summarized in Fig. 3(a). Here, a
energy difference between the 1+ and 0+ states are plot-
ted. The 1+ state is sensitive to the symmetry energy
coefficient [11], and both the 0+ and 1+ states are af-
fected by the pairing interactions. In the doubly-magic
nuclei, the pairing collectivity is generated by only the
residual pairing interactions (1) and (2).

Both the T = 0 pn pair-addition and pair-removal
vibrational modes are sensitive to the pairing interac-
tion employed. One clearly sees that the T = 0 pn-
pairing vibrational mode gets lower in energy with in-

f=1.3
1+

0+
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TABLE II: Same as Table I but for 58Cu.

58Cu Jπ = 1+ Jπ = 0+

configuration Eα + Eβ MS=1,Sz=0
αβ MS=0

αβ

π2p3/2 ⊗ ν2p3/2 4.5 1.28 1.90
π2p1/2 ⊗ ν2p3/2 6.4 0.39
π2p3/2 ⊗ ν2p1/2 6.5 0.37
π2p1/2 ⊗ ν2p1/2 7.9 0.26
π1f5/2 ⊗ ν1f5/2 9.7 0.15 0.55
π1f7/2 ⊗ ν1f7/2 5.1 0.17 0.50

∑
αβ Mαβ 4.25 4.68∑
ij Y

2
ij 0.03 0.03

strength. In Table I, the microscopic structure of the 1+

state obtained by setting f to 1.3 is summarized. This
1+ state is constructed by many pp excitations involv-
ing an f5/2 and a p3/2 orbitals located above the Fermi
levels as well as the πf7/2 ⊗ νf7/2 excitation. It is par-
ticularly worth noting that the hh excitations from the
sd-shell have an appreciable contribution to generate this
T = 0 pn-pair-addition vibrational mode, indicating a
40Ca core-breaking. Furthermore, all the pp and hh exci-
tations listed in the table construct the vibrational mode
in phase. The strong collectivity can be also seen from a
large amount of the ground-state correlation: A sum of
the backward-going amplitudes squared is 0.17
The low-lying 1+ state in 58Cu is also sensitive to the

T = 0 pairing interaction. As shown in Table II, this
mode is dominantly constructed by a πp3/2 ⊗ νp3/2 ex-
citation together with many other pp excitations involv-
ing a p1/2 and an f5/2 orbitals. In contrast to a large
core breaking in 42Sc, a role played by the hh excitation
πf7/2 ⊗ νf7/2 is minor in 58Cu.
In Figs. 1(c) and 1(d), the strength distributions for the

T = 1 pn-pair-addition transfer are shown together with
the strengths obtained without the residual interactions.
The low-lying 0+ state is predominantly constructed by
the πf7/2 ⊗ νf7/2 excitation in 42Sc similarly to the 1+

state. Though the number of possible pp configuration
in the bound states is smaller than in the T = 0 channel,
the energy shift due to the T = 1 pairing interaction is
large and the ground-state correlation is strong. The 0+

state in 58Cu is as collective as the 1+ state.
In an attempt to explore characteristic features of the

collective T = 0 pn-pairing vibration, we investigate the
pn pair-removal strengths in 40Ca and 56Ni. The strength
distributions for the pn-pair removal transfer are shown
in Fig. 2. Similarly to the T = 0 pn-pair-addition vibra-
tion, the frequency and the transition strengths to the
low-lying 1+ state strongly depend on the strength of the
T = 0 pairing interaction, in particular, for 40Ca → 38K.
In the case of f = 1.3, the 1+ state is mainly generated
by a πd3/2 ⊗ νd3/2 excitation with a matrix element of

FIG. 2: (Color online) Same as Fig. 1 but for the pn pair-
removal strengths.

FIG. 3: (Color online) (a) Energy difference ∆E = ω1+ −ω0+

in 38K, 42Sc, 54Co and 58Cu calculated with f = 0, 1.0, 1.3,
and 1.5. (b) Ratio of the energy difference calculated to the
experimental value ∆E/∆Eexp. The experimental data are
taken from Ref. [16]. Lines are drawn to guide the eye. A
horizontal line represents unity.

0.82. Furthermore, many other hh excitation participate
to generate this T = 0 pn-pair-removal vibrational mode:
they are πs1/2 ⊗ νs1/2 (with M = 0.07), πd5/2 ⊗ νd3/2
(0.30), πd3/2⊗νd5/2 (0.30), πd5/2⊗νd5/2 (0.16) together
with the pp excitation of πf7/2 ⊗ νf7/2 (0.39). We see a
coherence among the hh and pp excitations, and a strong
ground-state correlation:

∑
mn Y

2
mn = 0.11.

A change of the excitation energy due to the T = 0
pairing interaction is summarized in Fig. 3(a). Here, a
energy difference between the 1+ and 0+ states are plot-
ted. The 1+ state is sensitive to the symmetry energy
coefficient [11], and both the 0+ and 1+ states are af-
fected by the pairing interactions. In the doubly-magic
nuclei, the pairing collectivity is generated by only the
residual pairing interactions (1) and (2).

Both the T = 0 pn pair-addition and pair-removal
vibrational modes are sensitive to the pairing interac-
tion employed. One clearly sees that the T = 0 pn-
pairing vibrational mode gets lower in energy with in-

Collective pn-pairing vibration mode precursory to 
the T=0 pairing condensation

ΔE=ω1+ - ω0+

approaching the critical point to the T=0 pairing condensation
fc=1.53
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FIG. 4: (Color online) Ratio of the transition strengths to
the 1+ state to the ones to the 0+ state in 38K, 42Sc, 56Co
and 58Cu calculated varying the pairing strength f . Lines are
drawn to guide the eye.

creasing the pairing strength. The RPA breaks down at
the critical point, underestimates the excitation energy
and overestimates the transition strength around that
point [17]. The pairing collectivity generated is sensitive
to the shell structure as well as the interactions. The
critical strength is fc = 1.53 and 1.92 in 40Ca and 56Ni,
respectively. A rapid lowering of the RPA frequency and
an increase in the transition strength seen here indicate
that we have a true vacuum giving the T = 0 pairing gaps
∆ ≡ ⟨P̂T=0,S=1⟩ ̸= 0 in the limit of the strong pairing
interaction f > fc. Therefore the 1+ state can be con-
sidered as a soft mode precursory to the T = 0 pairing
condensation.

Let us discuss the correspondence between the col-
lective T = 0 pn-pairing vibrational mode presented
here and the experimental observations. Figure 3(b)
shows ratios of the energy difference ∆E calculated vary-
ing the strength f to the one experimentally observed:
∆Eexp = E1+1

− E0+1
is 0.328, 0.611, 0.937, and −0.203

MeV in 38K, 42Sc, 54Co, and 58Cu, respectively [16].
The calculated results obtained by using f = 1.1 − 1.3
[a shaded area in Fig. 3(b)] reproduce the experimen-
tal data. The reason why the 1+ state in 42Sc and 38K
has a stronger collectivity is because it is closer to the
critical point. As one sees in Figs. 1 and 2, the excita-
tion energy and the transition strengths are far from the
single-particle values. This indicates that the lowest 1+

state observed in nature in the nuclei under consideration
can be the collective T = 0 pn-pairing vibrational mode.

Another direct measure of the collectivity is the pn
transfer strength. Figure 4 shows the ratio of the T = 0
transition strengths to the lowest 1+ state to the T = 0
transition strengths to the lowest 0+ state. For the
strength f = 1.1 − 1.3, one sees an enhancement of the
T = 0 pn-transfer strengths over the T = 1 pn-transfer
strength by a factor of 1− 3. It is thus interesting to see
in a future work the pn-transfer cross sections calculated
by using the transition densities microscopically obtained
in the present framework. It is noted that Macchiavelli
performed the 40Ca(3He, p)42Sc reaction experiments at

ATLAS in Argonne National Laboratory, and reported
as a preliminary result the ratio of the cross sections
σ(1+)/σ(0+) ≃ 3/4 [9, 18]. This is comparable with the
result obtained by setting f ≃ 0.6. Therefore, the mea-
sured cross section is much smaller than the expected
value ≃ 3. In the present framework, it is difficult to de-
scribe the energy difference and the ratio of the transition
strengths consistently. For more quantitative discussion,
it is desirable to investigate in detail the dependence of
the pairing vibrational modes on the Skyrme functional
and the pairing interactions both in the T = 0 and T = 1
channels.

Quite recently, enhancement of the Gamow-Teller
(GT) strengths to the low-energy region in the N = Z
odd-odd nuclei in the fp-shell was reported and the low-
lying strengths are found to be very sensitive to the
T = 0 pairing interaction [19]. The GT strengths of
42Ca to the low-lying 1+ state in 42Sc are particularly en-
hanced. Without the residual interactions, the low-lying
and high-lying GT strengths correspond to primarily the
πf7/2⊗ νf7/2 and πf5/2⊗ νf7/2 excitations, respectively.
The enhanced strength to the low-lying states indicates
a coherent contribution of these excitations. As shown
in Table I, the lowest 1+ state in 42Sc is generated by
the πf7/2 ⊗ νf7/2 excitation together with the high-lying
πf5/2⊗νf7/2 excitation due to the T = 0 pairing interac-
tion. The result reported in Ref. [19] stimulates a further
investigation on how the pn-pairing collectivity of the
low-lying 1+ state is seen in the GT strength of a ph-type,
while the GT strengths associated with the pn-pairing
collectivity were investigated in a solvable model [20].

To summarize, we have found that a collective T = 0
pn-pairing vibrational mode emerges in the presence of
the T = 0 two-body particle-particle interaction in a self-
consistent Skyrme-EDF framework. It is suggested that
the low-lying Jπ = 1+ state in odd-odd N = Z nuclei is a
soft mode precursory to the T = 0 pairing condensation.
The pn-transfer strength to the 1+ state can be larger
than that to the 0+ state due to a strong collectivity of
the T = 0 pn-pairing vibration.
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Figure 3. B(GT) distributions in (a)42Sc,
(b)46V, (c)50Mn and (d)54Co.

For 50Mn and 54Co, the shell model
calculations were performed up to 12
MeV. The experimental B(GT) distri-
butions were well reproduced up to 7
MeV in both nuclei. On the other hand,
above 7 MeV the theoretical strengths
were larger. The cumulative sum of the
B(GT)’s up to 12 MeV were 50% and
40% larger than experimental ones for
50Mn and 54Co, respectively, as shown
in Fig. 4 (a) and 4 (b). At higher exci-
tations above the proton separation en-
ergy, a continuous spectrum caused by
the quasifree scattering appears in the
experiment. It is interesting to see that
a good agreement of both strengths is
attained if this continuous part is all
counted as the GT strength.

5. Summary

GT transitions from Tz = +1 to Tz = 0 nuclei in pf -shell were studied via (3He, t)
high-resolution experiment. With the energy resolution of 60, 33, 29 and 21 keV in 42Sc,
46V, 50Mn and 54Co, respectively, discrete GT states were identified. Since no accurate
B(GT) values are available from β decay for A = 42, 46, 50 and 54 systems, B(GT) values
were derived from the R2 values. The R2 values for A = 42 and A = 50 were derived in
the “merged analysis” using β decay half life T1/2. The R2 values for A = 46 and A = 54
were derived by the interpolation of the mass A systematic.

By comparing the B(GT) distribution among these four pf -shell nuclei, we see that
the centroid of the B(GT) strengths moves to higher excitation energies as mass number
increases. The experimental B(GT) distributions were compared with shell model calcu-
lations. From the fact that the fragmentation around 3 MeV in 46V was not reproduced,
it is suggested that the contribution of the sd-shell configurations should be included. For
50Mn and 54Co, the shell model can reproduce the B(GT) distribution well below 7 MeV.
However, above 7 MeV the strengths are much stronger.

This work was supported by Monbukagakusho, Japan, under grant no. 15540274 and
Special Promoted Research grant no. 13002001, and DFG, Germany under contracts
Br799/12-1, Jo 391/2-1 and Pi 393/1-2. The (3He, t) experiments were performed at
RCNP, Osaka University, under the programs E197 and E237.
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Summary
Fully-selfconsistent deformed pnQRPA is developed in a Skyrme EDF framework

Deformation effects on spin-isospin responses

Tiny deformation splitting in Gamow-Teller excitation Fragmentation of GTGR

Clear deformation splitting in Anti-analog GDR as seen in IVGDR

Effects of T=0 pairing

Low-lying GT states are sensitive to the location of the Fermi levels, and the beta-decay 
half-lives are shortened

Microscopic and quantitative description of spin-isospin excitations in nuclei with 
arbitrary mass number whichever they are spherical or deformed, located around the 
stability line or close to the drip line

provide a microscopic input to the astrophysical simulation

Proton-neutron pair-transfer strengths

Strong collectivity due to the T=0 pairing suggests emergence of a soft mode toward 
the T=0 pairing condensation
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Restoration of the isospin symmetry breaking (ISB)

C. A. Engelbrecht and R. H. Lemmer, PRL24(1970)607
Even w/o the Coulomb int., the ISB occurs in N>Z nuclei in a MFA

Ex. 90Zr (N-Z=10) w/o Coulomb

excitation energy w.r.t the gs of 90Zr

SkM* w/o pairing
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ŝ1t = ψ†(rστ)⟨σ|σ|σ′⟩⟨τ |τ t|τ ′⟩ψ(rσ′τ ′)

ρmax × zmax = 14.7 fm× 14.4 fm

∆ρ = ∆z = 0.6 fm

E2qp ≤ 60 MeV

S− − S+ = 10.05

2

E =

∫
drH(r)

H = Hkin+HSkyrme+Hem

HSkyrme =
∑

t=0,1

t∑

t3=−t

(
Heven

tt3 +Hodd
tt3

)

Heven
tt3 = Cρ

t ρ
2
tt3 + C∆ρ

t ρtt3∆ρtt3 + Cτ
t ρtt3τtt3 + C∇J

t ρtt3 ∇ · Jtt3 + CJ
t

←→
J 2

tt3

Hodd
tt3 = Cs

t s
2
tt3+C∆s

t stt3 ·∆stt3+CT
t stt3 ·Ttt3+C∇s

t (∇·stt3)2+Cj
t j

2
tt3+C∇j

t stt3 ·∇×jtt3

Hodd
tt3

H
ρ0

= 24/3
(
3π2

2

)2/3 [ !2
2m

+
(
Cτ

0 + Cτ
1 + CT

0 + CT
1

)
ρ0

]
ρ2/30 +

(
Cρ

0 + Cρ
1 + Cs

0 + Cs
1

)
ρ0

vres(r1, r2) ≡
δ2E

δρ(r1)δρ(r2)
∫

drrLYLψ
†(rστ)⟨σ|σ|σ′⟩⟨τ |τ |τ ′⟩ψ(rσ′τ ′)

∫
drrLYLŝ1t
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IAS appears as a NG mode in the pnRPA
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Restoration of the isospin symmetry breaking (ISB)

Ex. 90Zr (N-Z=10) w/o Coulomb
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numerical error increases ??

protons are paired



Restoration of the isospin symmetry breaking (ISB)

Ex. 90Zr (N-Z=10) w/o Coulomb

inclusion of the T=1 (S=0) pairing interaction in the pnQRPA
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