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Introduction 

• TSD bands in Lu isotopes (P.R.C73,034305(`06);C77,064318(‘08)；
C82,051303(’10)) 

 

☆ Hsp and rigid MoI are 
derived from the same radius, 
and both have the same 
periodicity  in γ with a span of 
2π /3. 

☆Even when we change the sign of γ in hydrodynamical MoI, the periodicity is π/3, 
and does not agree with the periodicity of Hsp  derived from Nilsson potential by 
Wigner-Eckart theorem. 
☆Erot(I-1,1,0)-Erot(I,0,0)>0 for hydro MoI  around γ~20◦, which contradicts 
exp.data <0, while rigid MoI agrees with exp.data. 

How far we can understand 
physics from the simple model. 



Moment of Inertia (MoI) versus γ (Lund Conv.) 

Rigid- body MoI Hydro. MoI 

degree  γ degree 



Stability of the rotor (proved by Landav in classical 
mechanics)  

• No wobbling  about the intermediate axis, and no 
stable rotation around intermediate axis of the rotor. 
 
 
 
 
 

•  When Ax is the maximum or the minimum,  ω2>0,  
      otherwise ω2<0 and ω is imaginary.  



Stability with potential V 

Hydro MoI with Copen conv. 

Rotation about maximum MoI 

P.R. C73,034305(2006) 



Bohr symmetry 



Angular-momentum dependence of MoI 

163Lu 



Motivation for this work 
• Discussion with Dr. Macchiavelli(Sept. 2011) 
Why MoI has the angular momentum dependence? (top-on-top 

model: . K. Tanabe & K. S-T, Phys.Rev. C73 034305(’06);  C77 064318(’08). K. 
S-T & K. T, Phys. Rev. C80 044307(R) (’10). K. S-T, K.T. & N.Yoshinaga, PTEP in 
press(’14).) 

He taught us the paper discussing gap-dependence in MoI  by       
   D.Bengtsson and J.Helgessen: Lec. Note in Summer Sch. at OakRidge (1991) 

   A.Bohr and B.R. Mottelson: Nuclear Structure  Vol.2 (Benjamin, MA, 1975) 

￭ Coriolis anti-pairing effect   
 Mottelson-Valatin:  Phys.Rev.Lett.5 (1960) 511. 
 Perturbation treatment of CAP:  M. Sano & M. Wakai, Nucl.Phys.67 (1965)481.  
  K. Sugawara, Prog. Theor. Phys. 35(1966)44. 
 



The gap dependence of MoI (Bohr-Mottelson) 

Cranking-formula：    with a common exc.  



How to estimate <g(x)>av  
 

Bohr-Mottelson: 

Bengtsson-Helgessen: 

This work: g(x)+g(x-δ) is symmetric about x=0 
 

Triangle with height of g(x= -δ/2) and base of 2δ 

Three <g(x)>av  go to 1 in the limit of ξ=0. 



Comparison of three methods for  
moment of inertia 

Three MoI go to the Rigid value at the limit of ξ=0 



Coriolis Anti-Pairing effect and  
CHFB equation in even nuclei 

CHFB  in perturbation; M.Sano &M.Wakai,N.P.67,481(1965),K. Sugawara, PTP35,44(1966) 

2nd order perturbation  for HΩ based on BCS solution 

Moment of inertia has the same form as cranking formula within the second order 
perturbation, but Δ and λ are different from BCS. 

CHFB equation 



The same technique for gap as applied to MoI 

The second term in Gap equation 

f(x) is symmetric with respect to x = - δ/2, 
while f(x)+f(x-δ ) is symmetric with respect 
to x=0. We expand F(x) around x=0 up to 
the second order of 
 



The first term in the gap equation (Bohr-Mottelson) 

The initial value ∆0  at I=I0 (without rotation). 

Constraint  for  I  is  replaced  by  I-I0 
    

=I - I0 

In the limit of  ξ=0, denominator diverges as ln(2/ξ) and 
numerator diverges as ln(ξ0/ξ) , and  Ic - I0 is finite  
(phase transition is sharp.)   



The relation between I-I0 and Δ  

Around  I-I0  ~18, Δ=0 

Moment of inertia with our formula  

Sharp phase transition 



Number constraint  
up to the second order perturbation 

Odd function of x, and the rotational effect on  λ is small. 



The case when gap is much less than  
single-particle level distance ∆<<d =1/ρ 

(direct summation) 

Assume n-levels in the interval 0 ≤x≤δ/2 (picket fence approx. ), 
expand up to (2Δ/d)2  

  

→ 

As sum is replaced by integral, 

Both <g(x)>av and Fn go to finite 
value in the limit of ξ=0  



Difference between integral and direct summation 

Integral 
 ξ→0, numerator  diverges as ln( 2/ξ), denominator   
diverges  as ln(ξ0/ξ), and Ic-I0  is finite. Sharp phase transition. 

 
Direct summation 
  ξ→0, numerator  diverges as ln( 2/ξ), denominator is finite, Ic-I0  

becomes infinite. Slow phase transition originates from the 
finiteness of nucleus.  

   ( Projection of number or angular momentum prevents the rapid decrease of 
Δ.: J.L.Egido, P.Ring, S.Iwasaki and H.J.Mang,P.L.154B,1(1985); Y.Sun and 
J.L.Egido,P.R.C50,1839(1994)) 

 
 



Both ∆ ≥d and <<d in even nucleus  

The MoI in the direct summation shows upward 
convexity before it reaches to rigid value. The gap 
shows concave before it reaches to 0.   

Around I >30, ∆~0. 



Odd nucleus (the last nucleon in  ℓ state) 

Quasi-vacuum 

CHFB equation is the same as even case, if we adopt    

CAP effect and blocking effect is taken into account  in 2nd-
order perturbation theory. (K. Sugawara, PTP 35,44(1966))  
 
In order to apply the same technique as used in even nucleus, we 
rewrite equations for gap, moments of inertia, and number 
constraints. 
 

or 



   In order to apply the same technique as used in even nucleus,     
 we rewrite equations for gap,  moments of inertia, and number    
constraint.  



Moment of inertia 



If      [521]3/2 in odd particle,   j>
2  = 12  to [512]5/2 

                                                  j<
2   = 12 to [510]1/2 

         [532]3/2                            j>
2  = 18 to [523]5/2 

                                                   j<
2   = 16 to [541]1/2 

         [512]5/2                            j>
2   =  8 to [503]7/2 

                                                   j<
2   =  4 to [523]3/2 

How to estimate  

Bohr-Mottelson text book 



Blocking effect (Ωx=0) 

Nilsson-Prior:Mat.Fys.Dan.32(1961) odd gap is smaller than even gap because 
of blocking effect. 



Number constraint (Ωx≠0) 
 

Blocking effect  

∆N(x) :no effect on λ at Ωx ≠0 

Zero for ξ~0 (high I -I0) , η ~0 or η2 ~ 1/3 ( η~0.6) 



Gap equation and Moment of Inertia 
as a function of angular momentum  

when  ∆≥ d (integral ) 

when  ∆<<d, (direct summation)     ξ starts from 0.15 



Comparison between even and odd cases 
common parameters( ρ=2.5MeV-1, δ=2.0MeV, J rig  =68MeV-1 ) 

(even: ξ0=0.8,   odd: ξ0=0.6, η=0.6, j>
2=12, j<

2 =10 
In the case of ∆<<d, ξ starts from 0.15in both cases.)  

Odd moment of inertia starts from larger value, increases gradually,  and  reaches 
to rigid value later than even. Before it reaches to rigid, the curve shows upward 
convexity. Gap shows concave before it reaches to 0. 



K.S.-T.,K.T. &N.Yoshinaga, PTEP in 
print (2014)  

upward convexity 



Excited bands in even nucleus and  
 odd-odd nucleus 

The last nucleons in   1 and 2 levels:           

They prevent the reduction of gap much more than the 
case with only one blocked level. 



Conclusion 
• We discuss the angular momentum dependence of moments of 

inertia based on the perturbation treatment of  the Coriolis anti-
pairing effect both for even and odd nuclei, by applying the 
approximation method developed by Bohr-Mottelson for the gap-
dependence of moment of inertia.  

• We developed the integral method (∆ ≥ d (level distance)) and direct 
summation method (∆<<d) for  the gap and the moment of inertia as 
functions of  I. Because of the finiteness of nucleus, the phase 
transition from super to normal becomes slow and infinite.  Moment 
of  inertia shows  upward convexity in direct summation (high-spin 
states).  

• Because of the blocking effect, the gap in odd nucleus starts from 
smaller value than even nucleus, decreases gradually,  the moment of 
inertia starts from larger value than even nucleus, increases gradually 
and show slightly convex upward curve before it reaches the rigid-
body value which is similar to those in top-on-top model.       
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