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Singly-closed nuclei�
Appearance of low-lying deformed states (intruder 0+)�



Mean-field (density functional) approaches�

•  Minimization of the total energy 
automatically determines s.p. energies,  (pair, 
def.) correlations, etc. for a given nucleus. 

 
•  Spherical shell gap at N=20 is about 4 MeV 

(SkM*) 
– Deformed H.F. ground state (SkM*) 
– Spherical H.F. ground state (SGII) 
– Correlation beyond the mean-field is important. 



VAP on parity 

Parity-projected wave function 

( ) P̂±Φ = Φ ± Φ

1det{ }nφ φΦ = ⋅⋅⋅ ( Slater determinant ) 
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Variation after projection 

Orthonormalization 
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Parity eigenstates 



Parity-Projected Skyrme Hartree-Fock equation 
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3D space is discretized in lattice 

Single-particle orbital: 

N: Number of particles 

Mr: Number of mesh points 

NiMrkkii ,,1,)}({)( ,1 !! == =rr φφ

Spatial mesh size is 0.8 fm. 

(ĥ−η ⋅ !r )φi ± Φ P̂ Φ {ĥP !φi − !φ j φ j ĥP !φij∑ }+ (E(±) −E1) !φ = eijj∑ φ j

Density of 20Ne  
Kπ = 0- state 
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Density of 30Mg ( SGII ) 

Kπ = 0+    

Kπ = 0+    Kπ = 1-  

Kπ = 1-, 0-  

( β2= 0.578 ) 

( β2= 0.223 ) ( 80.2%, 19.7% ) 

PPSHF ground solution 

Even-parity Odd-parity 



Spectra of 30Mg ( SGII ) 

β2= 0.578 β2= 0.223 

small deformation 
 (sd)14 

Large deformation 
 (sd)12(sd → pf)2 

theory 



Density of 32Mg (SGII) 
Kπ = 0+    

Kπ = 0+    

Kπ = 0+    

Kπ = 1- 

Kπ = 2- 

Kπ = 2-, 1-  

PPSHF ground solution 

( β2= 0.438 ) 

( β2= 0.095 ) 

( β2= 0.679 ) 

( 55.1%, 44.8% ) 



Spectra of 32Mg (SGII) 

β2= 0.095 β2= 0.438 

Large deformation 
 (sd → pf)2 

Nearly spherical 
 (sd)16 

Rotational correlation 
leads to the deformed ground state. 

Significant rotational correction 



Spectra of 34Mg ( SGII ) 

β2= 0.534 

Large deformation 
 (sd)14(sd → pf)2(pf)2 

Small deformation 
 (sd)16(pf)2 

theory 
β2= 0.319 



B(E2: 2+
1→0+

1) value of Mg isotopes (e2fm4) 



VAPπ cal. for 24Mg  (SGII parameter set) 
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Potential Surface of 24Mg 

γ=60° 

β β 
PPSHF PPSHF+AMP 

Contour lines 
in every 500 keV  

In PPSHF+AMP, the ground energy is 990 keV lower than 
 minimum energy on symmetry axis. 

-213.533 MeV -207.294 MeV 



VAPπ, I for 24Mg 

EXP 

GCM 

β= 0.6, γ= 15° 
3D-AMP 

Kπ=0++2+ Kπ=0++2+ 



Gogny-GCM (1D)�
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Fig. 11. The AMPGCM energies EI,σ for σ = 1 and σ = 2 and Iπ = 0+,2+,4+,6+ are plotted in an energy
versus quadrupole moment diagram for the nuclei 20–40Mg. The quadrupole moment of each AMPGCM state is
given by the average quadrupole moment q̄I,σ

20 . The AMPPES for Iπ = 0+ are also plotted to guide the eye.

states (σ = 2) provided by the AMPGCM approach. Note that one of the main advantages
of such representation is that the band structure of each nucleus can be observed at a glance.
In Fig. 12 we compare the results for the AMPGCM two neutron separation energies

S2N = E0+1
(N − 2) − E0+1

(N) with the corresponding mean field results (see subsection
3.1) and also with the available experimental values [84]. The AMPGCM binding energy
is the sum of the mean field binding energy of the intrinsic state plus the energy gain due
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Fig. 10. The same as Fig. 9 but for the nuclei 32–40Mg.

In the nucleus 26Mg, both the 0+
1 and the 2

+
1 states are slightly oblate deformed with

q̄
I=0,σ=1
20 = −0.17b and q̄

I=2,σ=1
20 = −0.16b while for the state 4+

1 the collective wave
function becomes prolate deformed (i.e., a band crossing takes place) with q̄

I=4,σ=1
20 =

0.39b and q̄
I=6,σ=1
20 = 0.72b. In both 28Mg and 30Mg the ground state shows considerable

mixing between the oblate and prolate configurations. Here for the spin values Iπ ! 2+,
the collective wave functions are almost inside the prolate wells. The average deformations
are 0.50b, 0.60b and 0.67b for 28Mg for the states 2+

1 , 4
+
1 , and 6

+
1 while for

30Mg the
corresponding deformations for the same spin values are 0.58b, 0.96b and 1.09b.
The oblate character of the 0+ and 2+ states in 26Mg already obtained without

configuration mixing is preserved when it is included (although in the latter case almost
spherical configurations are obtained), in contradiction with the experimental result
(prolate character) extracted from the value of the spectroscopic quadrupole moment of
the 2+ state (−13.5 (20) e fm2). However, our results predict a strong shape coexistence
for those states in 26Mg as well as for the 0+ states of 28–30Mg. A characteristic fingerprint
of shape coexistence comes from the position of the 0+

2 excited state: it is expected to lie

R. Rodriguez-Guzman J. L. Egido and L. M. Robeldo, Nucl. Phys. A709, 201 (2002)  



•  “Mean-field”-based approaches 
– Energy density functional is universal (no tuning 

involved) 
– GCM cal. with 2D real coordinates is a state-of-

art technique 
•  Further developments 

– VAP on both parity and angular momentum 
– GCM with complex coordinates 

•  Insights into IoI (?) 
– Significant effect from rotational (def.) correlations 

in relatively light systems 
– Pairing & def. & rot. correlations can be 

“cooperative” in the shell closure. 
– Shape fluctuation effect 


