"Mean-field" calculations for IoI

Takashi Nakatsukasa (Tsukuba/RIKEN)

"Beyond mean-field" approaches based on the mean-field models

Ohta, Yabana, Nakatsukasa, (method, stable nuclei) Phys. Rev. C70 (2004) 14301 (Mg isotopes) J. Phys. Conf. Ser. 20 (2005) 211

RIBF Discussion Plus! 2014.4.25

Singly-closed nuclei

Appearance of low-lying deformed states (intruder 0+)

Mean-field (density functional) approaches

• Minimization of the total energy automatically determines s.p. energies, (pair, def.) correlations, etc. for a given nucleus.

- Spherical shell gap at N=20 is about 4 MeV (SkM*)
 - Deformed H.F. ground state (SkM*)
 - Spherical H.F. ground state (SGII)
 - Correlation beyond the mean-field is important.

VAP on parity

Parity-projected wave function

$$|\Phi\rangle = \det\{\phi_1 \cdots \phi_n\} \text{ (Slater determinant)}$$

$$|\Phi^{(\pm)}\rangle = |\Phi\rangle \pm \hat{P}|\Phi\rangle$$
Parity eigenstates

Energy functional

$$E^{(\pm)} = \frac{\left\langle \Phi^{(\pm)} \middle| \hat{H} \middle| \Phi^{(\pm)} \right\rangle}{\left\langle \Phi^{(\pm)} \middle| \Phi^{(\pm)} \right\rangle} = \frac{\left\langle \Phi \middle| \hat{H} \middle| \Phi \right\rangle \pm \left\langle \Phi \middle| \hat{H} \middle| \Phi \middle| \Phi \right\rangle}{1 \pm \left\langle \Phi \middle| \hat{P} \middle| \Phi \right\rangle} \quad \text{Orthonormalization}$$
Variation after projection

$$\frac{\delta}{\delta \phi_i^*} \left[\frac{\left\langle \Phi^{(\pm)} \middle| \hat{H} \middle| \Phi^{(\pm)} \right\rangle}{\left\langle \Phi^{(\pm)} \middle| \Phi^{(\pm)} \right\rangle} + \sum_{ij} e_{ij} \left\{ \left\langle \phi_i \middle| \phi_j \right\rangle - \delta_{ij} \right\} + \frac{\eta \cdot \left\langle \Phi \middle| \sum_i \vec{r}_i \middle| \Phi \right\rangle}{i} \right] = 0$$

Parity-Projected Skyrme Hartree-Fock equation

$$(\hat{h} - \eta \cdot \vec{r})\phi_i \pm \langle \Phi | \hat{P} | \Phi \rangle \{\hat{h}_P \tilde{\phi}_i - \sum_j \tilde{\phi}_j \langle \phi_j | \hat{h}_P | \tilde{\phi}_i \rangle \} + (\mathbf{E}^{(\pm)} - \mathbf{E}_1)\tilde{\phi} = \sum_j e_{ij}\phi_j$$
$$\mathbf{E}_1 = \langle \Phi | \hat{H} | \Phi \rangle \qquad \tilde{\phi}_i(r) = \sum_{i=1}^A \phi_j(\vec{r})(\mathbf{B}^{-1})_{ij} \qquad \mathbf{B}_{ij} = \int d\vec{r}\phi_i(\vec{r})\phi_j(-\vec{r})$$

3D space is discretized in lattice

Single-particle orbital: $\phi_i(\mathbf{r}) = \{\phi_i(\mathbf{r}_k)\}_{k=1,\dots,Mr}, \quad i = 1,\dots,N$

N: Number of particles

Mr: Number of mesh points

Spatial mesh size is 0.8 fm.

Ohta, Yabana, Nakatsukasa, Phys. Rev. C70 (2004) 14301

Density of ³⁰Mg (SGII)

PPSHF ground solution

Even-parity

Odd-parity

 $K^{π} = 0^{+}$ (β₂=0.223)

 $\mathbf{K}^{\pi} = \mathbf{0}^{+}$ ($\beta_2 = 0.578$)

 $\mathbf{K}^{\pi} = \mathbf{1}^{-}, \mathbf{0}^{-}$ (80.2%, 19.7%)

 $\mathbf{K}^{\pi} = \mathbf{1}^{-}$

Spectra of ³⁰Mg (SGII)

Density of ³²Mg (SGII)

PPSHF ground solution

$K^{\pi} = 0^+$ (β₂= 0.095)

 $K^{\pi} = 1^{-1}$

 $\mathbf{K}^{\pi} = \mathbf{0}^{+}$ ($\beta_2 = 0.438$)

 $\mathbf{K}^{\pi} = \mathbf{0}^+$ (β₂=0.679)

 $\mathbf{K}^{\pi} = 2^{-}, 1^{-} (55.1\%, 44.8\%)$

Spectra of ³²Mg (SGII)

Significant rotational correction

Spectra of ³⁴Mg (SGII)

VAP^{π} cal. for ²⁴Mg (SGII parameter set)

VAP^{π , *I*} for ²⁴Mg

3D-AMP

Gogny-GCM (1D)

- "Mean-field"-based approaches
 - Energy density functional is universal (no tuning involved)
 - GCM cal. with 2D real coordinates is a state-ofart technique
- Further developments
 - VAP on both parity and angular momentum
 - GCM with complex coordinates
- Insights into IoI (?)
 - Significant effect from rotational (def.) correlations in relatively light systems
 - Pairing & def. & rot. correlations can be "cooperative" in the shell closure.
 - Shape fluctuation effect