

Level, $E(2_1^+)$, $E(4_1^+)$, and $B(E2)\uparrow$ Systematics around the "Island of Inversion"

Pieter Doornenbal ピーター ドルネンバル

Outline

Introduction

 $E(2_1^+)$ and $E(4_1^+)$ Systematics

 $B(E2)\uparrow$ and δ

Odd-Even Na Isotopes

Overview

Summary and Outlook

Experimental status of:

- $E(2_1^+)$ and $E(4_1^+)$ systematics of Ne and Mg isotopes
- $B(E2)\uparrow$ and δ systematics of Ne and Mg isotopes
- Level systematics of odd-even Na isotopes

Outline

Introduction

 $E(2_1^+)$ and $E(4_1^+)$ Systematics

 $B(E2)\uparrow$ and δ

Odd-Even Na Isotopes

Overview

Summary and Outlook

Experimental status of:

- $E(2_1^+)$ and $E(4_1^+)$ systematics of Ne and Mg isotopes
- $B(E2)\uparrow$ and δ systematics of Ne and Mg isotopes
- Level systematics of odd-even Na isotopes
- Completing the systematics:
 - The $E(2_1^+)$ of ⁴⁰Mg
- $B(E2)\uparrow$ of ³²Ne and ³⁸Mg

Introduction

RIBF Discussion Plus!, April 25^{th} , 2014 - 4

$E(2_1^+)$ and $E(4_1^+)$ Systematics

Status in 2000 from Gamma-ray Spectroscopy

Level, $E(2_1^+)$, $E(4_1^+)$, and $B(E2)\uparrow$ Systematics around the lol

Status in 2000 from Gamma-ray Spectroscopy

Status in 2000 from Gamma-ray Spectroscopy

Level, $E(2_1^+)$, $E(4_1^+)$, and $B(E2)\uparrow$ Systematics around the lol

Inelastic Scattering on IH2 and Two-Step Fragmentation of ³⁰Ne and ³⁴Mg at Intermediate Energies with RIPS

Inelastic Scattering on IH2 and Two-Step Fragmentation of ³⁰Ne and ³⁴Mg at Intermediate Energies with RIPS

Prediction by E. K. Warburton et al., Phys. Rev. C 41, 1147 (1990)

Prediction by E. K. Warburton et al., Phys. Rev. C 41, 1147 (1990)

A. Gade et al., PRL 99, 072502 (2007).

FIG. 3 (color online). Composition of the wave functions (WF) of the lowest-lying states of ³⁶Mg with respect to $n\hbar\omega$ components according to the MCSM calculation.

A. Gade et al., PRL 99, 072502 (2007).

FIG. 3 (color online). Composition of the wave functions (WF) of the lowest-lying states of ³⁶Mg with respect to $n\hbar\omega$ components according to the MCSM calculation.

A. Gade et al., PRL 99, 072502 (2007).

FIG. 3 (color online). Composition of the wave functions (WF) of the lowest-lying states of ³⁶Mg with respect to $n\hbar\omega$ components according to the MCSM calculation.

A. Gade et al., PRL 99, 072502 (2007).

ZeroDegree Spectrometer

	Seco	ndary T	arget	RIPS Stage
				~ 3 m between Q-poles
 Spectrometer ZeroDeg Particle ID after seco Fragment momentum Various modes of ope mode 	pree ndary tar distributi eration $p/\Delta p$	get on Δp	Ang. Accep.	 DALI2 array, 186 Nal(Tl) GRAPE HPGe array $E_{\text{beam}} \sim 100 - 250$ MeV/u
Large Accep. High res.(achrom) Dispersive	1240 2120 4130	±3% ±3% ±2%	±45 mrad(H) ±30 mrad(V ±20 mrad(H) ±30 mrad(V ±20 mrad(H) ±30 mrad(V	() ()

DALI2 (2010-to Present)

Introduction

- $E(2_1^+)$ and $E(4_1^+)$ Systematics
- Status in 2000
- Spectroscopy at RIPS
- Status in 2005
- ZeroDegree

DALI2 Configuration

- $E(2^+)$ in ^{32}Ne
- **☆** ³⁸Mg
- Mg Systematics
- Summary

 $B(E2)\uparrow$ and δ

Odd-Even Na Isotopes

Overview

Summary and Outlook

- Forward-wall configuration
- 186 Nal(TI) detectors
- ϑ coverage 11° to 165°
- Saint-Gobain: $16 \times 8 \times 4.5$ cm³
- Scionix: $16 \times 8 \times 4 \text{ cm}^3$
- 7 % intrinsic resolution at 1 MeV
- $\Delta E/E \approx$ 10(11) % at 100(250) MeV/*u*
- pprox 20% FEP efficiency at 1 MeV
- Simplified target holder and beam pipe
 - 1mm Pb (+1mm Sn) shielding

S. Takeuchi et al., RIKEN Pr. Rep. 36, 148 (2003)

PID Behind Target and Gamma-Ray Spectra

- ⁴⁸Ca 110 pnA
- $C({}^{32}Ne, {}^{32}Ne^*), C({}^{33}Na, {}^{32}Ne^*)$
- ³²Ne: 6 pps, 230 MeV/u
- F8 target: ^{nat.}C (2.54 g/cm²)
- DALI2 array: 180 NaI(TI) detectors
- Total data taking: 8 hours
- $E(2_1^+)$ at 722(9) keV

PID Behind Target and Gamma-Ray Spectra

- ⁴⁸Ca 110 pnA
 C(³²Ne,³²Ne^{*}), C(³³Na,³²Ne^{*})
 ³²Ne: 6 pps, 230 MeV/u
 F8 target: ^{nat.}C (2.54 g/cm²)
 DALI2 array: 180 Nal(TI) detectors
- Total data taking: 8 hours
- $E(2_1^+)$ at 722(9) keV

$E(2^+)$ as Function of N

Introduction

- $E(2_1^+)$ and $E(4_1^+)$ Systematics
- Status in 2000
- Spectroscopy at RIPS
- Status in 2005
- ZeroDegree
- DALI2Configuration

♦ $E(2^+)$ in ³²Ne

- ✤ ³⁸Mg
- Mg Systematics
- Summary

 $B(E2)\uparrow$ and δ

Odd-Even Na Isotopes

Overview

Summary and Outlook

- Lowest $E(2^+)$ of Ne isotopes
- Very good agreement with Utsuno *et al.*, PRC 60, 054315 (1999)
- Very good agreement with Intruder calculation of Caurier *et al.*, NPA 693, 374 (2001)
- ³²Ne belongs to the "Island of Inversion"

PD, H. Scheit *et al.* Phys. Rev. Lett. 103, 032501 (2009) arXiv:0906.3775

Systematics in Mg Isotopes

Systematics in Mg Isotopes

SDPF-M: Y. Utsuno *et al.*, PRC 60, 054315 (1999). SDPF-MU: Y. Utsuno *et al.*, PRC 86, 051301 (2012). SPPF-U-MIX: A. Poves *et al.*, PST 150, 014030 (2012). 3DAMP+GCM: J. M. Yao *et al.*, PRC 83, 014308 (2011). PD, H. Scheit, S. Takeuchi *et al.*, PRL 111, 212502 (2013). $R_{4/2}$ in Si: S. Takeuchi *et al.*, PRL 109, 182501 (2012). X. Liang *et al.*, PRC 74, 014311 (2006).

Summary of $E(2_1^+)$ and $E(4_1^+)$

Nucleus	$E(2_{1}^{+})$				$E(4_{1}^{+})$			
	Method	$\dot{MeV/u}$	Facility	Year	Method	MeV/u	Facility	Year
²⁸ Ne	Coulex	53	NSCL	1999	(p,p')	51	RIKEN	2006†
³⁰ Ne	(p,p')	48	RIKEN	2003	2p-k.o.	87	NSCL	2010 [†]
³² Ne	(C,C'),1p-k.o.	230	RIKEN	2009	2p-k.o	pprox 230	RIKEN	*
³⁰ Mg	β decay	_	CERN	1979	14C(18O,2p)	2.6	ANL	2010 [‡]
³² Mg	β decay	_	CERN	1979	Inelastic	?	GANIL	2002 [◊]
³⁴ Mg	2p-k.o.	38	RIKEN	2001	2p-k.o.	38	RIKEN	2001†
³⁶ Mg	2p-k.o.	83	NSCL	2007	1p-k.o.	220	RIKEN	2013 [†]
³⁸ Mg	1,2p-k.o.	200	RIKEN	2013	1p-k.o.	200	RIKEN	2013 [†]

[†]From systematics and comparison to theoretical calculations. *Measured in NP0906-RIBF03 (D. Bazin *et al.*). *Spin assignment via scattered particle angular distribution: S. Takeuchi *et al.*, PRC **79**, 054319 (2009). [‡]Spin assignment from γ -ray angular distribution: A.N. Deacon *et al.*, PRC **82**, 034305 (2010).

Summary of $E(2_1^+)$ and $E(4_1^+)$

Nucleus	$E(2_{1}^{+})$				$E(4_{1}^{+})$			
	Method	MeV/u	Facility	Year	Method	MeV/u	Facility	Year
²⁸ Ne	Coulex	53	NSCL	1999	(p,p')	51	RIKEN	2006 †
³⁰ Ne	(p,p')	48	RIKEN	2003	2p-k.o.	87	NSCL	2010 [†]
³² Ne	(C,C'),1p-k.o.	230	RIKEN	2009	2p-k.o	pprox 230	RIKEN	*
³⁰ Mg	eta decay	_	CERN	1979	14C(18O,2p)	2.6	ANL	2010 [‡]
³² Mg	eta decay	_	CERN	1979	Inelastic	?	GANIL	2002 ^{\larger}
³⁴ Mg	2p-k.o.	38	RIKEN	2001	2p-k.o.	38	RIKEN	2001†
³⁶ Mg	2p-k.o.	83	NSCL	2007	1p-k.o.	220	RIKEN	2013 [†]
³⁸ Mg	1,2p-k.o.	200	RIKEN	2013	1p-k.o.	200	RIKEN	2013 [†]

[†]From systematics and comparison to theoretical calculations. *Measured in NP0906-RIBF03 (D. Bazin *et al.*). *Spin assignment via scattered particle angular distribution: S. Takeuchi *et al.*, PRC **79**, 054319 (2009). [‡]Spin assignment from γ -ray angular distribution: A.N. Deacon *et al.*, PRC **82**, 034305 (2010).

FIG. 6. (Color) Angular distributions for the excitation to the 2321-keV states in ³²Mg. The black curves show the calculations with $J^{\pi} = 0^+$, 1^- , and 2^+ assumed. The blue and red curves show the calculations for $J^{\pi} = 3^-$ and 4^+ , respectively. For details see the text.

Summary of $E(2_1^+)$ and $E(4_1^+)$

		$E(4_{1}^{+})$		
r	Method	MeV/u	Facility	Year
9	(p,p')	51	RIKEN	2006 [†]
3	2p-k.o.	87	NSCL	2010†
9	2p-k.o	pprox 230	RIKEN	*
9	14C(18O,2p)	2.6	ANL	2010 [‡]
9	Inelastic	?	GANIL	2002
1	2p-k.o.	38	RIKEN	2001†
7	1p-k.o.	220	RIKEN	2013 [†]
3	1p-k.o.	200	RIKEN	2013 [†]

FIG. 6. (Color) Angular distributions for the excitation to the 2321-keV states in ³²Mg. The black curves show the calculations with $J^{\pi} = 0^+$, 1⁻, and 2⁺ assumed. The blue and red curves show the calculations for $J^{\pi} = 3^-$ and 4⁺, respectively. For details see the text.

$B(E2)\uparrow$ and δ inside the "Island of Inversion"

Overview of Ne and Mg

Introduction

$$E(2_1^+)$$
 and $E(4_1^+)$
Systematics

 $B(E2)\uparrow$ and δ

✤ Ne and Mg

Inelastic scattering

Odd-Even Na Isotopes

Overview

Summary and Outlook

B. Pritychenko *et al.*, PLB **461**, 322 (2009).
H. Iwasaki *et al.*, PLB **620**, 118 (2005).
J. Gibelin *et al.*, PRC **75**, 057306 (2007).

SDPF-M: Y. Utsuno *et al.*, PRC **60**, 054315 (1999). SDPF-U-MIX: E. Caurier *et al.*, arXiv:1309.6955.

Inelastic Scattering of Ne and Mg isotopes

- Inelastic scattering of ^{28,30}Ne and ^{34,36}Mg
- 0.095g/cm² liquid hydrogen target
- 45 MeV/u at center-of-target

S. Michimasa et al., PRC, accepted.

Inelastic Scattering of Ne and Mg isotopes

- Inelastic scattering of ^{28,30}Ne and ^{34,36}Mg
- 0.095g/cm² liquid hydrogen target
- 45 MeV/u at center-of-target
- $\delta_c = (4\pi/3eZR_0)B(E2)\uparrow^{1/2}, R_0 = 1.2A^{1/3}$ fm
- Maximum deformation lengths (and parameters $\beta_{(p,p')}$) in Mg isotopes

S. Michimasa et al., PRC, accepted.

Inelastic Scattering of Ne and Mg isotopes

- Inelastic scattering of ^{28,30}Ne and ^{34,36}Mg
- 0.095g/cm² liquid hydrogen target
- 45 MeV/u at center-of-target
- $\delta_c = (4\pi/3eZR_0)B(E2)\uparrow^{1/2}, R_0 = 1.2A^{1/3}$ fm
- Maximum deformation lengths (and parameters $\beta_{(p,p')}$) in Mg isotopes
- Better theoretical agreement for Mg isotopes

S. Michimasa et al., PRC, accepted.

Odd-Even Na Isotopes

Level, $E(2_1^+)$, $E(4_1^+)$, and $B(E2)\uparrow$ Systematics around the lol

Rather limited knowledge

B. Pritychenko *et al.*, PRC **63**, 011305(R) (2000).
PD, HS *et al.*, PRC **81**, 041305(R) (2010).
A. Gade *et al.*, PRC **83**, 044305 (2011).
PD, HS, ST, YU *et al.*, PTEP, accepted.

Level, $E(2_1^+)$, $E(4_1^+)$, and $B(E2)\uparrow$ Systematics around the lol

- Rather limited knowledge
- Intermediate-energy Coulex of ³¹Na: $\beta_{C,A} = 0.59(10)$ for $3/2^+_{g.s.} \rightarrow 5/2^+$ and $3/2^+_{g.s.} \rightarrow 7/2^+$

B. Pritychenko *et al.*, PRC **63**, 011305(R) (2000).
PD, HS *et al.*, PRC **81**, 041305(R) (2010).
A. Gade *et al.*, PRC **83**, 044305 (2011).
PD, HS, ST, YU *et al.*, PTEP, accepted.

- Rather limited knowledge
- Intermediate-energy Coulex of ³¹Na: $\beta_{C,A} = 0.59(10)$ for $3/2^+_{g.s.} \rightarrow 5/2^+$ and $3/2^+_{g.s.} \rightarrow 7/2^+$
- Extended spectroscopical information for ^{31,33,35}Na

- Rather limited knowledge
- Intermediate-energy Coulex of ³¹Na: $\beta_{C,A} = 0.59(10)$ for $3/2^+_{g.s.} \rightarrow 5/2^+$ and $3/2^+_{g.s.} \rightarrow 7/2^+$
- Extended spectroscopical information for ^{31,33,35}Na
- Close-to-ideal K = 3/2 rotational bands in the strongcoupling limit

 $(3/2^+)$

22

Neutron Number N

3/2

20

0

B. Pritychenko *et al.*, PRC **63**, 011305(R) (2000).
PD, HS *et al.*, PRC **81**, 041305(R) (2010).
A. Gade *et al.*, PRC **83**, 044305 (2011).
PD, HS, ST, YU *et al.*, PTEP, accepted.

Level, $E(2_1^+)$, $E(4_1^+)$, and $B(E2)\uparrow$ Systematics around the lol

 $(3/2^+)$

24

- Rather limited knowledge
- Intermediate-energy Coulex of ³¹Na: $\beta_{C,A} = 0.59(10)$ for $3/2^+_{g.s.} \rightarrow 5/2^+$ and $3/2^+_{g.s.} \rightarrow 7/2^+$
- Extended spectroscopical information for ^{31,33,35}Na
- Close-to-ideal K = 3/2 rotational bands in the strongcoupling limit
- $[E(7/2_1^+) E(3/2_{gs}^+)] / [E(5/2_1^+) E(3/2_{gs}^+)] = 2.4 \text{ and}$ $[E(9/2_1^+) E(3/2_{gs}^+)] / [E(7/2_1^+) E(3/2_{gs}^+)] = 1.75$

B. Pritychenko *et al.*, PRC **63**, 011305(R) (2000).
PD, HS *et al.*, PRC **81**, 041305(R) (2010).
A. Gade *et al.*, PRC **83**, 044305 (2011).
PD, HS, ST, YU *et al.*, PTEP, accepted.

- Rather limited knowledge
- Intermediate-energy Coulex of ³¹Na: $\beta_{C,A} = 0.59(10)$ for $3/2^+_{g.s.} \rightarrow 5/2^+$ and $3/2^+_{g.s.} \rightarrow 7/2^+$
- Extended spectroscopical information for ^{31,33,35}Na
- Close-to-ideal K = 3/2 rotational bands in the strongcoupling limit
- $[E(7/2_1^+) E(3/2_{gs}^+)] / [E(5/2_1^+) E(3/2_{gs}^+)] = 2.4 \text{ and}$ $[E(9/2_1^+) E(3/2_{gs}^+)] / [E(7/2_1^+) E(3/2_{gs}^+)] = 1.75$
- Experiment: 3.10(4), 2.62(4), and 2.72(6) for 31,33,35 Na and 1.68(3) for 33 Na $9/2^+ \rightarrow 7/2^+$ decay

B. Pritychenko *et al.*, PRC **63**, 011305(R) (2000).
PD, HS *et al.*, PRC **81**, 041305(R) (2010).
A. Gade *et al.*, PRC **83**, 044305 (2011).
PD, HS, ST, YU *et al.*, PTEP, accepted.

- Rather limited knowledge
- Intermediate-energy Coulex of ³¹Na: $\beta_{C,A} = 0.59(10)$ for $3/2^+_{g.s.} \rightarrow 5/2^+$ and $3/2^+_{g.s.} \rightarrow 7/2^+$
- Extended spectroscopical information for ^{31,33,35}Na
- Close-to-ideal K = 3/2 rotational bands in the strongcoupling limit
- $[E(7/2_1^+) E(3/2_{gs}^+)] / [E(5/2_1^+) E(3/2_{gs}^+)] = 2.4 \text{ and}$ $[E(9/2_1^+) - E(3/2_{gs}^+)] / [E(7/2_1^+) - E(3/2_{gs}^+)] = 1.75$
- Experiment: 3.10(4), 2.62(4), and 2.72(6) for 31,33,35 Na and 1.68(3) for 33 Na $9/2^+ \rightarrow 7/2^+$ decay
- Good agreement with SDPF-M interaction

Experimental Borders of "Island of Inversion"

Level, $E(2_1^+)$, $E(4_1^+)$, and $B(E2)\uparrow$ Systematics around the lol

Overview of Deformed Nuclei

Summary and Outlook

Level, $E(2_1^+)$, $E(4_1^+)$, and $B(E2)\uparrow$ Systematics around the lol

Summary and Outlook

Introduction

- $E(2_1^+)$ and $E(4_1^+)$ Systematics
- $B(E2)\uparrow$ and δ
- Odd-Even Na Isotopes
- Overview
- Summary and Outlook
- Summary

⁴⁰Mg may be last 2_1^+ in this region of nuclear chart that can be accessed via in-beam γ -ray spectroscopy

- AME2012: S(2n) for ³⁴Ne = 300(100) keV
- All neutron-rich Na, Mg isotopes deformed
- Where is the maximum of deformation?
 - Data indicate Mg isotopes
 - Sparse information on Ne isotopes
 - Should remeasure $B(E2)\uparrow$ of ^{26,28}Ne at safe energies
- Most spin assignments follow systematics and comparison to calculations
 - Inelastic scattering at lower energies
 - 1-nucleon knockout reactions, e.g. ²⁹Ne

THE END

Level, $E(2_1^+)$, $E(4_1^+)$, and $B(E2)\uparrow$ Systematics around the lol

Introduction

 $E(2_1^+)$ and $E(4_1^+)$ Systematics

 $B(E2){\uparrow} \text{ and } \delta$

Odd-Even Na Isotopes

Overview

Summary and Outlook

Backup slides from now

Level, $E(2_1^+)$, $E(4_1^+)$, and $B(E2)\uparrow$ Systematics around the lol