Heavy-ion collisions and nuclear EOS

Akira Ono

Tohoku University

Advances and perspectives in computational nuclear physics Octber 5 – 7, 2014, Hilton Waikoloa Village, Waikoloa, Hawaii

Heavy-Ion Collisions, Supernovae, Neutron Stars

Heavy-Ion Collisions (several ten - several hundred MeV/nucleon)

An event of central collision of Xe + Sn at 50 MeV/nucleon (AMD calculation)

- Supernova
- Neutron Star

Closely related through EOS

- Density ρ : $\cdots \sim \frac{1}{10}\rho_0 \sim \frac{1}{2}\rho_0 \sim \rho_0 \sim 2\rho_0 \sim \cdots$
- Temperature T: 0 MeV ~ 1 MeV ~ 10 MeV ~ · · ·
- Time scale: $10^{-22} \text{ s} \rightarrow 1 \text{ s}$ (equilibrium)
- Number of particles: $10^2 \rightarrow 10^{??} = \infty$
- Neutron-proton asymmetry $\delta = \frac{N-Z}{A}$: 0 ~ 0.25 \rightarrow 1

Nuclear EOS (at T = 0)

$$(E/A)(\rho_p, \rho_n) = (E/A)_0(\rho) + S(\rho)\delta^2 + \cdots$$
$$\rho = \rho_p + \rho_n, \quad \delta = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}$$

- $S_0 = S(\rho_0)$ at the saturation density
- $L = 3\rho_0 (dS/d\rho)_{\rho=\rho_0}$

Constrains on $S(\rho)$

Horowitz et al., J. Phys. G: Nucl. Part. Phys. 41 (2014) 093001.

Nuclear EOS (at T = 0)

$$(E/A)(\rho_p, \rho_n) = (E/A)_0(\rho) + S(\rho)\delta^2 + \cdots$$
$$\rho = \rho_p + \rho_n, \quad \delta = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}$$

• $S_0 = S(\rho_0)$ at the saturation density

• $L = 3\rho_0 (dS/d\rho)_{\rho=\rho_0}$

Constrains on $S(\rho)$

Horowitz et al., J. Phys. G: Nucl. Part. Phys. 41 (2014) 093001.

Supernova

Abundance of light clusters in the post-bounce supernova core, based on nuclear statistical equilibrium.

Sumiyoshi and Röpke, PRC77 (2008) 055804.

Heavy-Ion Collisions

Experimental data of cluster abundance in ³⁶Ar + ⁵⁸Ni for the events where the quasi-projectile is vaporized.

Borderie et al., EPJA6 (1999) 197, PLB388 (1996) 224.

Linking Nuclear Matter and HIC

Linking Nuclear Matter and HIC

- Antisymmetrized Molecular Dynamics (AMD) a transport model
- Application to heavy-ion collisions, to obtain information on EOS
- Possibility to apply to large systems, and to systems in thermal equilibrium

Akira Ono (Tohoku University)

Heavy-ion collisions and nuclear EOS

Antisymmetrized Molecular Dynamics

AMD wave function

$$Z_{i} = \sqrt{\nu} D_{i} + \frac{i}{2\hbar \sqrt{\nu}} K_{i}$$

$$\nu : \text{Width parameter} = (2.5 \text{ fm})^{-2}$$

$$\chi_{\alpha_{i}} : \text{Spin-isospin states} = p \uparrow, p \downarrow, n \uparrow, n \downarrow$$

Time-dependent variational principle

$$\delta \int_{t_1}^{t_2} \frac{\langle \Phi(Z) | (i\hbar \frac{d}{dt} - H) | \Phi(Z) \rangle}{\langle \Phi(Z) | \Phi(Z) \rangle} dt = 0, \qquad \delta Z(t_1) = \delta Z(t_2) = 0$$

Equation of motion for the wave packet centroids Z

 $|\Phi(Z)\rangle = \frac{\det}{ij} \Big[\exp \Big\{ -\nu \Big(\mathbf{r}_j - \frac{\mathbf{Z}_i}{\sqrt{\nu}} \Big)^2 \Big\} \chi_{\alpha_i}(j) \Big]$

$$\frac{d}{dt}\mathbf{Z}_{i} = \{\mathbf{Z}_{i}, \mathcal{H}\}_{\mathsf{PB}} \qquad \text{or} \qquad i\hbar \sum_{j=1}^{A} \sum_{\tau = x, y, z} C_{i\sigma, j\tau} \frac{dZ_{j\tau}}{dt} = \frac{\partial \mathcal{H}}{\partial Z_{i\sigma}}$$

Motion of wave packets in the mean field

(c.f. $C_{i\sigma,j\tau} = \delta_{ij}\delta_{\sigma\tau}$ in QMD)

 $\mathcal{H} = \frac{\langle \Phi(Z) | H | \Phi(Z) \rangle}{\langle \Phi(Z) | \Phi(Z) \rangle} + (\text{c.m. correction}),$

H: Effective interaction (e.g. Skyrme force)

Slater determinant

$$\Phi_{\text{Slater}} = \mathcal{A} \Big[\varphi_1(\mathbf{r}_1) \varphi_2(\mathbf{r}_2) \cdots \varphi_A(\mathbf{r}_A) \Big]$$

The state represented by Φ is invariant under any regular linear transformation among the single-particle states $\{\varphi_1, \varphi_2, \dots, \varphi_A\}$.

$$\rho = \sum_{i=1}^{A} \sum_{j=1}^{A} |\varphi_j\rangle B_{ji}^{-1} \langle \varphi_i| \quad \text{with} \quad B_{ij} = \langle \varphi_i | \varphi_j \rangle$$

Expectation value of a one-body operator $O = o_1 + o_2 + \dots + o_A$

$$\langle O \rangle = \mathsf{Tr}[o\rho] = \sum_{i=1}^{A} \sum_{j=1}^{A} \langle \varphi_i | o | \varphi_j \rangle B_{ji}^{-1}$$

Skyrme force, in recent calculations.

$$\begin{aligned} v_{ij} &= t_0 (1 + x_0 P_\sigma) \delta(\mathbf{r}) + \frac{1}{2} t_1 (1 + x_1 P_\sigma) [\delta(\mathbf{r}) \mathbf{k}^2 + \mathbf{k}^2 \delta(\mathbf{r})] & \mathbf{r} = \mathbf{r}_i - \mathbf{r}_j \\ &+ t_2 (1 + x_2 P_\sigma) \mathbf{k} \cdot \delta(\mathbf{r}) \mathbf{k} + t_3 (1 + x_3 P_\sigma) [\rho(\mathbf{r}_i)]^\alpha \delta(\mathbf{r}) & \mathbf{k} = \frac{1}{2h} (\mathbf{p}_i - \mathbf{p}_j) \\ &\langle V \rangle = \int \mathcal{V} \Big(\rho(\mathbf{r}), \tau(\mathbf{r}), \Delta \rho(\mathbf{r}), \mathbf{j}(\mathbf{r}) \Big) d\mathbf{r} & \sim A^2 \times \text{Volume} \\ &\rho(\mathbf{r}) = \left(\frac{2\nu}{\pi}\right)^{\frac{3}{2}} \sum_{i=1}^A \sum_{j=1}^A e^{-2\nu(\mathbf{r} - \mathbf{R}_{ij})^2} B_{ij} B_{ji}^{-1}, & \mathbf{R}_{ij} = \frac{1}{2\sqrt{\nu}} (\mathbf{Z}_i^* + \mathbf{Z}_j) \end{aligned}$$

Finite-range effective interaction such as Gogny force

$$v_{ij} = \sum_{k=1,2} (W_k + B_k P_\sigma - H_k P_\tau - M_k P_\sigma P_\tau) e^{-(\mathbf{r}_i - \mathbf{r}_j)^2 / a_k^2} + t_\rho (\mathbf{1} + P_\sigma) \rho(\mathbf{r}_i)^\sigma \delta(\mathbf{r}_i - \mathbf{r}_j)$$
$$\langle V \rangle = \frac{1}{2} \sum_{i=1}^A \sum_{j=1}^A \sum_{k=1}^A \sum_{l=1}^A \langle ij|v|kl - lk \rangle B_{ki}^{-1} B_{lj}^{-1} \sim A^4$$

Method by Sugawa and Horiuchi

Sugawa & Horiuchi, PTP105 (2001) 131

$$\rho(\mathbf{r}) = \left(\frac{2\nu}{\pi}\right)^{\frac{3}{2}} \sum_{i=1}^{A} \sum_{j=1}^{A} e^{-2\nu(\mathbf{r}-\mathbf{R}_{ij})^{2}} B_{ij} B_{ji}^{-1} = e^{-2\nu\mathbf{r}^{2}} \sum_{i=1}^{A} \sum_{j=1}^{A} C_{ij}(\mathbf{r}), \qquad C_{ij}(\mathbf{r}) = e^{-4\nu\mathbf{r}\cdot\mathbf{R}_{ij}} \times B_{ij} B_{ji}^{-1} e^{-2\nu\mathbf{R}_{ij}^{2}}$$

 $C_{ij}(\mathbf{r})$ at different grid points are obtained by a geometric progression.

$$C_{ij}(\mathbf{r} + \mathbf{n}a) = C_{ij}(\mathbf{r}) e^{-4\nu a \mathbf{R}_{ij} \cdot \mathbf{r}}$$

Cut-off by the spatial distance

To the density at a given point \mathbf{r} , the wave packets located very far from \mathbf{r} do not contribute.

$$\rho(\mathbf{r}) = \left(\frac{2\nu}{\pi}\right)^{\frac{3}{2}} \sum_{i}^{|\mathbf{D}_i - \mathbf{r}| < R_0} \sum_{i}^{|\mathbf{D}_j - \mathbf{r}| < R_0} e^{-2\nu(\mathbf{r} - \mathbf{R}_{ij})^2} B_{ij} B_{ji}^{-1}, \quad R_0 \approx 10 \text{ fm}$$

Combination of these two techniques.

Efficiency of numerical computation

CPU time per nucleon for a computation of

$$\left\{\frac{\partial}{\partial Z_k^*}\langle V\rangle; \quad k=1,2,\ldots A\right\}$$

CPU time $\sim c(\rho) \times A^{1+\epsilon}$.

 $c(\rho)$ is small for lower densities.

Xe + Sn central collisions at 50 MeV/nucleon

Without cluster correlations (AMD with NN collisions)

Two directions of extension of AMD

Wave-packet splitting: Give fluctuation to each wave packet centroid, based on the single-particle motion.

$$\frac{d}{dt}Z = \{Z, \mathcal{H}\}_{\mathsf{PB}} + (\mathsf{NN Collision})$$

+ (W.P. Splitting) + (E. Conservation)

AO and Horiuchi, PPNP53 (2004) 501

At each two-nucleon collision $N_1 + B_1 + N_2 + B_2 \rightarrow C_1 + C_2$

 $v\rho\,d\sigma=\tfrac{2\pi}{\hbar}|\langle\mathsf{CC}|V_{NN}|\mathsf{NBNB}\rangle|^2\delta(\mathcal{H}-E)\,p_{\mathsf{rel}}^2dp_{\mathsf{rel}}d\Omega$

AO, J. Phys. Conf. Ser. 420 (2013) 012103

Xe + Sn central collisions at 50 MeV/nucleon

Without cluster correlations (AMD with NN collisions)

With cluster and cluster-cluster correlations

Model Comparison: Expansion followed by fragmentation

Colonna, Ono, Rizzo, PRC82 (2010) 054613.

- SMF = Stochastic Mean Field model
- AMD = Antisymmetrized Molecular Dynamics

Central Collisions of ¹¹²Sn + ¹¹²Sn at 50 MeV/nucleon

Used the same σ_{NN} and very similar effective interactions in both models.

Efforts to understand the model differences are indispensable.

Rare isotope production by projectile fragmentation

Mocko, Tsang, AO et al., PRC78(2008)024612.

Application to systems in thermal equilibrium

Is the equilibrium consistent with quantum statistics?

$$\frac{dZ}{dt} = \{Z, \mathcal{H}\}_{\mathsf{PB}} + \Delta Z \qquad \Rightarrow \qquad \mathsf{Equilibrium} \ (\mathsf{Statistical Properties})$$

Many related works by: Ono & Horiuchi, Ohnishi & Randrup, Schnack & Feldmeier, Sugawa & Horiuchi

Constant pressure caloric curves

Comparison of reaction and equilibrium

⁴⁰Ca + ⁴⁰Ca, E/A = 35 MeV, b = 0 Furuta and Ono, PRC79 (2009) 014608.

States at a reaction time t half of Ca + Ca system

= $\stackrel{?}{=}$ = An equilibrium ensemble (*E*, *V*, *A* = 36)

Liquid-Gas separation in fragmentation reactions

At a late stage of reaction

Isospin asymmetry of the liquid part δ_{liq} in ¹²⁴Sn + ¹²⁴Sn and ¹¹²Sn + ¹¹²Sn central collisions at 50 MeV/nucleon.

Energy spectra of clusters (t and ³He)

 124 Sn + 124 Sn and 112 Sn + 112 Sn central collisions at 50 MeV/u (60° < θ_{cm} < 120°)

Consistent with the low-density EOS.

Liu et al., PRC86(2012)024605.

Dynamics of Neutrons and Protons at 300 MeV/nucleon

For the symmetry energy at high densities $\rho \sim 2\rho_0$.

Dynamics in Compression and Expansion

N/Z Spectrum Ratio — an observable

Summary

Toward a unified description of nuclear collision dynamics and nuclear matter.

- Application to heavy-ion collisions and comparison with experimental data.
 - Improvement of transport models. e.g., cluster correlations.
 - Getting information of EOS. Symmetry energy at various densities.
- Application to systems in thermal equilibrium.
 - Liquid-gas phase transition in finite systems.
 - Tuning the model and the code for large systems.

