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FIG. 4. A Density and B pressure of a unitary Fermi gas versus µ/kBT , normalized by the density and pressure of a non-
interacting Fermi gas at the same chemical potential µ and temperature T . Red solid circles: experimental EoS. Dashed lines:
low-temperature behavior with ξ = 0.364, 0.376 and 0.389. Black dashed line: low-temperature behavior from the ξ upper
bound ξ = 0.383 [35]. Green open circles and black dashed line at 1.0: MIT experimental density and pressure, and theory for
the ideal Fermi gas. Blue solid squares (blue band): Diagrammatic Monte Carlo [18] for density (pressure). Solid green line:
3rd order Virial expansion. Open black squares: self-consistent T-matrix [22]. Open green circles: [32]. Orange star: [30]. Blue
star: [31]. Solid diamonds: ENS experiment [12]. Open diamonds: Tokyo experiment [11].

imum of µ/EF = 0.42(1) at T/TF = 0.171(10), and then
decreases at lower temperatures. This is expected for a
superfluid of paired fermions [22]. As the temperature
is increased from zero in a superfluid, phonons (sound
excitations) emerge that increase the chemical potential
µ. In addition, fermion pairs start to break and single
fermions contribute increasingly to the chemical poten-
tial with increasing temperature. At Tc, µ/EF must have
a sharp change in slope, as d(µ/EF )/d(T/TF ) involves
the singular compressibility. Indeed, the self-consistent
T-Matrix calculation shows a very clear peak in µ/EF

near Tc [22], in agreement with our observation. At low
temperatures, the reduced chemical potential µ/EF sat-
urates to the universal value ξ. As the internal energy
E and the free energy F satisfy E(T ) > E(T = 0) =
3
5NξEF = F (T = 0) > F (T ) for all T , the reduced
quantities fE ≡ 5

3
E

NEF
= p̃ and fF ≡ 5

3
F

NEF
= 5

3
µ
EF

− 2
3 p̃

provide upper and lower bounds for ξ [36], shown in Fig.
3A. Taking the coldest points of these three curves and
including the systematic error due to the effective inter-
action range, we find ξ = 0.376(5). The uncertainty in
the Feshbach resonance is expected to shift ξ by at most
2% [13]. This value is consistent with a recent upper
bound ξ < 0.383 [35], is close to ξ = 0.36(1) from a
self-consistent T-matrix calculation [22], and agrees with
ξ = 0.367(9) from an epsilon expansion [37]. It lies be-
low earlier estimates ξ = 0.44(2) [38] and ξ = 0.42(1) [39]
via fixed-node quantum Monte-Carlo that provide upper

bounds on ξ. Our measurement agrees with several less
accurate experimental determinations [5], but disagrees
with the most recent experimental value 0.415(10) that
was used to calibrate the pressure in [12], shown in Fig.
4B.

From the energy, pressure and chemical potential, we
can obtain the entropy S = 1

T (E + PV − µN). Shown
in Figure 3B is the entropy per particle S/NkB =
TF
T (p̃ − µ

EF
) as a function of T/TF . At high tempera-

tures, S is close to the entropy of an ideal Fermi gas at
the same T/TF . Down to Tc, neither the non-interacting
nor the unitary Fermi gas has S/N # kB . Also, the
specific heat CV is not linear in T . Thus it is question-
able to identify the normal regime as a Landau Fermi
Liquid, although some thermodynamic quantities agree
surprisingly well with the expectation for a Fermi liquid
(see [12] and [13]). Below about T/TF = 0.17 the en-
tropy starts to strongly fall off compared to that of a
non-interacting Fermi gas, which we again interpret as
the freezing out of single-particle excitations due to for-
mation of fermion pairs. Far below the critical tempera-
ture for superfluidity, phonons dominate. They only have
a minute contribution to the entropy [22], less than 0.02
kB at T/TF = 0.1, consistent with our measurements.
At the critical point we obtain Sc = 0.73(13)NkB , in
agreement with [22]. It is encouraging for cold atom ex-
periments that we obtain very low entropies, less than
0.04NkB , far below critical entropies required to reach


