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FIG. 1. (color online) Ground-state energy-density ξ = E /EFG of N+
fermions in a periodic cubic box at the unitary limit. The circles with
error bars are the result of using a quadratic least-squares extrapolation
to zero effective range of our new QMC results. The solid curve
is the best fit SLDA DFT. The light dotted curve is the functional
considered in [19] with α = 0.69. For comparison, we have plotted
the previous best estimate ξS = 0.40(1) (red square) and the current
estimate ξS = 0.383(1) below it to the far right of the figure. Inset: we
show the typical effective-range dependence ξ (kF re) with the best fit
1σ error bounds for all-point cubic (solid dark green) and five-point
quadratic (hatched light yellow) polynomial fits. Note that: a) the
five-point quadratic model is consistent with the full cubic model and
has a comparable extrapolation error, and b) the inflection point near
kF re ≈ 0.16 necessitates a higher-order fit for larger ranges (cubic
is sufficient for the ranges shown here). Results for N+ = 40 show
the same qualitative behaviour; hence, for the other points we use the
five-point quadratic extrapolation.

tion introduced to reduce the statistical error. The antisym-
metrized product of s-wave pairing functions φ(ri j′) defines
the nodal structure:

φ(r) = ∑
n

α‖n‖eikn·r + β̃ (r). (2)

The sum is truncated (we include ten coefficients) and the
omitted short-range tail is modelled by the phenomenological
function β̃ (r) chosen to ensure smooth behavior near zero
separation. We use the same form for β̃ (r) as in [6] with the
values b = 0.5 and c = 5. We vary the 10 coefficients α‖n‖
for each N+ to minimize the energy as described in Ref. [24].
Representative nodal structures are defined by the coefficients
in Table I. We find that the same ansatz suffices for different
effective ranges, but that independent optimization is required
for each N+.

We simulate the Hamiltonian:

H =
h̄2

2m

(
−

N+

∑
k=1

∇2
k − 4v0µ2 ∑

i, j′
sech2(µri j′)

)
, (3)

with an interspecies interaction of the modified Pöschl-Teller
type (off-resonance intraspecies interactions are neglected).
We tune to infinite s-wave scattering length by setting v0 = 1:
the effective range becomes re = 2/µ . To extrapolate to the

zero-range limit, we simulate at µ/kF ∈ {12.5,24,36,48,60}
for which 0.03 < kF re < 0.16. A careful examination of ad-
ditional ranges up to kF re ∼ 0.35 for N+ = 40 and N+ = 66
(see the inset in Fig. 1) reveals that a three-parameter quadratic
model in re is necessary and sufficient to extrapolate our results
without a systematic bias; the results are shown in Fig. 1.

The energies exhibit definite finite-size effects for N+ !
50, but are essentially featureless for larger N+. This lack of
structure is confirmed by the best fit DFT (discussed below)
and disagrees with the results presented in Ref. [10]. The
values of ξ for N+ > 50 are distributed about the best fit value
ξS ≈ 0.383(1), and represent the lowest variational bounds to
date. Part of the decrease from previous results is due to the
careful extrapolation to zero effective range. The remainder
is due to the improved optimization of the variational wave
function.

To model the finite-size effects we turn to a local DFT for
the unitary Fermi gas that generalizes the SLDA originally
presented in Ref. [20]. In addition to the total density n+ =
2∑n|vn|2, the SLDA includes both kinetic τ+ = 2∑n|∇vn|2 and
anomalous densities ν = ∑n unv∗n. (The + index signifies the
sum of the contributions coming from the two components a
and b; un(r) and vn(r) are the Bogoliubov quasiparticle wave
functions.) The original three-parameter SLDA functional has
the form

ESLDA =
h̄2

m

(
α
2

τ++β 3
10

(3π2)2/3n5/3
+

)
+gν†ν , (4)

where α is the inverse effective mass; β is the self-energy; and
γ , which controls the pairing, enters through the regularized
coupling g = 1/(n1/3

+ /γ −Λ/α) where Λ → ∞ is a momentum
cutoff that we take to infinity (see Ref. [5] for details). Using
the equations for homogeneous matter in the thermodynamic
limit, one can numerically replace the parameters β and γ
with the more physically relevant quantities ξS and η = ∆/EF ,
where ∆ is the pairing gap.

In principle, the DFT can be expressed in terms of only the
density n+ and its gradients. References [21] consider local for-
mulations of this type (called Extended Thomas-Fermi (ETF)
functionals). Since gradients vanish in the periodic box, ETF
functionals reduce to EETF(n+)≡ ξSEFG and exhibit no finite-
size structure, contrary to the QMC results. Reference [19]
adds ατ+, but without ν†ν , the finite-size effects do not cor-
relate with the QMC behavior (see Fig. 1), and the best fit to

N+ a0 a1 a2 a3 a4 a5 a6 a8 a9 a10

10 1600 350 49 16 12 14 14 11 9.0 6.7
40 160 91 27 0.49 -2.8 -0.086 2.2 2.9 2.5 1.9
80 -24 13 12 8.2 5.1 3.7 2.7 2.0 1.6 1.0

120 -51 -17 0.51 7.8 6.3 5.8 4.6 2.5 1.7 1.0

TABLE I. Sample coefficients of the pairing function (2) α‖n‖ =

10−4aI where I = ‖n‖2 = n2
x + n2

y + n2
z = k2L2/4π2. Higher-order

coefficients are set to zero.


