
(HVI) equation (see Ref. [30] for a discussion) for a
vortex in 2D:

M€~rv ! ~fqp ¼ !s ~"# ð _~rv ! ~vsÞ þ ~Fv: (1)

Here, ~rv is the position of the vortex, the force ~Fv is per
unit length along the vortex, !s is the number density of the
‘‘background’’ superfluid, ~" ¼ 2#@~z is the quantized vor-
tex circulation, and ~vs is the ‘‘background’’ superfluid
velocity. This equation should only be taken as an intuitive
guide since terms on the left-hand side are ill-defined. The
‘‘mass of the vortex’’M, for example, depends strongly on

the way it is measured [31], and the force ~fqp due to
excited phonons has significant memory effects.

For slowly accelerating vortices, the contribution from
the term proportional to €~rv is small. Furthermore, if the
vortex and pinning site move sufficiently slowly, phonons

are not excited ( ~fqp ¼ 0), and we can ignore the entire left-
hand side of Eq. (1) [32]. This leaves the well-established
Magnus relationship !s ~"# ð _~rv ! ~vsÞ ' ! ~Fv relating the
force ~Fv applied to the vortex and its perpendicular veloc-
ity _~rv relative to the background superfluid velocity ~vs.
Thus, by observing the dynamical deflection of a vortex
from a nuclear pinning site, one can directly extract the
direction and approximate magnitude of the vortex-nucleus
force without requiring a subtle subtraction of energies.

In small systems, the Magnus relation can only be used
to estimate the magnitude of the force since the superfluid

density !s and velocity vs are not precisely defined, though
reasonable estimates can be obtained. With an external
pinning potential Vpinð ~rpin ! ~xÞ, however, one can directly
and unambiguously calculate the force on the pinning site:

~F pin ¼ !
Z

d3x
Vpinð ~rpin ! ~xÞ

~rpin
!ð ~xÞ: (2)

In the nuclear context where neutrons are present in the
both the pinning site (the nucleus) and the superfluid
medium, the force can be obtained in two ways: (1)
Eq. (2) can be directly applied to a Coulomb potential
(Vpin) that couples to the proton charge density (!)—this
will be the force that the vortex exerts on the nuclear
lattice—or (2) one can estimate the force using Newton’s
law ~Fpin ¼ mpin ~apin for a dynamic pinning site comprising
protons and entrained neutrons. The position of the
pinning site can be unambiguously defined as the center
of mass of the protons, and the effective mass mpin can be
estimated [33].
What remains is to prepare the initial conditions with a

vortex and nucleus interacting at various distances. The
traditional self-consistent approach requires diagonalizing
N # N matrices (N ¼ NxNyNz) which takesOðN3Þ opera-
tions. This is not feasible for realistic N ( 106, as each
iteration would required a day of supercomputing wall
time. Instead, one can use adiabatic state preparation
[34,35] which takes OðN2 logNÞ operations. The idea is
to adiabatically evolve in real time a state of some solvable
system to a desired initial state in the system of interest. For
example, starting with a noninteracting (Bose) gas trapped
in a harmonic potential VHOðrÞ ¼ mB!

2r2=2, we can form
either the ground state "GS / expð!mB!r2=2Þ, or an
exact vortex ‘‘Landau level’’ "$ / ðxþ iy! $Þ#
expð!mB!r2=2@Þ (stationary in a rotating frame) with
angular momentum lz ¼ N@=ð1þmB!$2=@Þ where $ is
the displacement of the vortex node from the center of the
harmonic trap. From this exact noninteracting state, we
adiabatically evolve the system to an interacting state in the
desired trapping potential Vtrap by simultaneously switch-
ing on the interaction s% and interpolating the trapping
potentials Vt ¼ ð1! sÞVHO þ sVtrap where s ¼ sðt=TÞ is a
smooth C1 switching function that goes from 0 to 1 over a
characteristic time T chosen to be longer than any intrinsic
time scale in the system:

From "GS we can generate the ground state, and from
"$¼0 we can generate a single vortex in the center of the
trap, both to high precision. The adiabatic state preparation
can be significantly accelerated by introducing a ‘‘quantum
friction’’ term to remove phonon noise [35]. With this
combined approach, one can efficiently produce almost
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FIG. 2 (color online). Here we demonstrate consistency in
dynamically extracting a vortex-pinning force. We use the
nuclear pairing potential [15] VpinðrÞ ¼ 0:75 MeV=½1þ
expðr=fm! 7:5Þ* at densities !( 0:045 fm!3 ' 0:28!sat. The
triangular (blue) points come from the computationally expen-
sive ‘‘stationary’’ method, while the solid (green) curve comes
from using the ‘‘dynamic’’ real-time evolution analogous to that
shown on the left panel of Fig. 1. The dotted (red) curve shows
the Magnus estimate for the force (1) using a Thomas-Fermi
approximation for !s and estimating ~vs from the image vortex
[36]. The double curves come from the pinning site moving in
then out.
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