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Outline
• The Many Body Problem

Quantum Monte Carlo (QMC), Mean Field Theory, Density Functional Theory (DFT)

• Nuclear Dynamics
Glitches in Neutron Stars (vortex dynamics, pinning, quantum turbulence)
Fission in nuclei, Excitations (GDR), Reactions

• From Cold Atoms to Nuclei and Neutron Stars
Validated Methods
DFT, Vortex pinning, Glitches, Quantum Turbulence

• Realtime Techniques
Directly probe dynamics
Efficient simulation (Quantum Friction state prep., extract pinning interaction)
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Topic Outline
• The Many Body Problem of Nuclear physics

Focus on neutron stars and fission as problems

• What is the UFG and how does it relate to nuclei?
Overview of crossover, polarized phases
Agreement of experiment and theory for UFG statics
FFLO states?  Mention bosons for flat trap.

• Realtime methods for Nuclear Dynamics
Glitches in Neutron Stars (vortex dynamics, pinning, quantum turbulence)
Problems with static energy calculations
How realtime methods help: good scaling
Quantum Friction

• DFTs (SLDA and GPE)
Hydrodynamic vs Fermionic, comparison and some successes

• Vortex dynamics and MIT experiment

• Quantum Turbulence

• Conclusion: the path from Cold Atoms to Nuclei and Neutron Stars
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The nuclear landscape

• Nuclear systems are complex many-
body systems with rich properties 

• No “one size fits all” method

• All theoretical approaches need to be 
linked

Nucleonic matter: 

Infinite system of interacting neutrons 
and protons in the thermodynamic limit.

Introduction Formalism Results scale Summary

Which theoretical method(s)?

! No “one size fits all” theory for nuclei

! All theoretical approaches need to be linked

Non-Empirical Pairing Functional for nuclei T. Duguet

Friday, March 12, 2010

The 
Nuclear 
Landscape

•Lattice qcd,
 nucleons, interactions

•Qmc, etc.
small to medium nuclei

•Dft, 
medium to large nuclei

•Neutron stars?
Molecular Dynamics
Hydrodynamics

QCD Vacuum Animation: Derek B. Leinweber (http://www.physics.adelaide.edu.au/~dleinweb/VisualQCD/Nobel/index.html)
Neutron Star Structure: (Dany Page) Landscape: (modified from a slide of A. Richter)

QCD Vacuum
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QCD Vacuum

The 
Nuclear 
Landscape

•Lattice qcd,
 nucleons, interactions

•Qmc, etc.
small to medium nuclei

•Dft, 
medium to large nuclei

•Neutron stars?
Molecular Dynamics
Hydrodynamics
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Dany Page: http://www.astroscu.unam.mx/neutrones/NS-Picture/NS-Picture.html

Neutron Stars

Neutron superfluid in Crust is 
almost a Unitary Fermi Gas

(as ~ -7re, kFas ~ -10)

Many relevant phenomena
•Vortex pinning (glitches)
•Heat transport
•Equation of State

Can we use cold-atoms to model 
nuclear matter?
•More complicated interactions

•Three-body, tensor forces etc.
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Universality
• Short distance irrelevant:

• At long distance (r>R) potentials equivalent V1≡V2
• Characterized by scattering length a
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Fermionic Superfluids
Universality

Fermionic Superfluids

Neutron Matter
kF ~ fm-1

ann = -19 fm
rnn = 2 fm

Cold Atoms
kF ~ µm-1

Tuneable a
rnn ~ 0.1 nm

Many systems
• different species
• dipole interactions
• optical lattices
• quantum simulators

Unitary 
Fermi Gas

a = ∞
re = 0

Nuclei
neutrons 

and protons

Other Superfluids
• Superconductors (charged + phonons)
• Quarks (gluon interactions, Dark Matter?)
• 3He (p-wave)
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From Cold Atoms to 
Nuclear Physics

• Tuneable interactions
Ufg and neutron matter
Few-body resonances, Efimov trimers
Simulate more complicated systems

(stimulated spin orbit couplings, polar atoms, optical lattices, boselets/fermilets)

• Benchmark for many-body theory
Directly compare to experiment
Dft, works well for statics at T=0 and na=nb

Need to test: dynamics, polarized systems, finite T
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Unitary Fermi Gas (ufg)

• Characterize interactions by single number:
• S-wave scattering length a
Gas is dilute so we can ignore small-scale structure

• Tune interactions with magnetic field
Feshbach Resonance

�H =

��
�na����

�a†�a Ea +

�nb����
�b

†�b Eb

�
�

�
V �na�nb

Ea,b =
p2

2m
� µa,b, µ± =

µa ± µb

2
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Unitary Fermi Gas 
• S-wave scattering length

• BEC – Unitary – BCS crossover
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Unitarity
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Unitary Fermi Gas 
• Nothing startling: bound state simply has has E=0

• Dimer becomes infinitely large

r

V

0

R
a

a=∞

Unitarity
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Unitary Fermi Gas (ufg)

• Unitary limit a=∞: No interaction length scale!

• Universal physics:
• ℰ(ρ) = ξℰFG(ρ) ∝ ρ5/3,  ξ=0.376(5)

• Simplest non-trivial model (dimensional analysis)

�H =

��
�na����

�a†�a Ea +

�nb����
�b

†�b Eb

�
�

�
V �na�nb

Ea,b =
p2

2m
� µa,b, µ± =

µa ± µb

2
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Unitary Fermi Gas (ufg)

• Universal physics:
• ℰ(ρ) = ξℰFG(ρ) ∝ ρ5/3,  ξ=0.376(5)

• Simple, but hard to calculate!
Bertsch Many Body X-challenge

�H =

��
�na����

�a†�a Ea +

�nb����
�b

†�b Eb

�
�

�
V �na�nb

Ea,b =
p2

2m
� µa,b, µ± =

µa ± µb

2
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Unitary Fermi Gas
Realized in Cold Atoms

• 6Li in Feshbach Resonance

•106 in harmonic traps (magneto-optical)

• Control numbers (RF transitions)

• Stir, slice, etc. with lasers

• Expansion and in-situ imaging

Phase Structure of Cold Asymmetric Fermionic Matter M. M. Forbes

MIT Vortex Data

M.W. Zwierlein, A. Schirotzek, C.H. Schunck, W. Ketterle, (2006)

NTG Seminar 18 October 2006 Page 8
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•Only scales: T and N
•One convex dimensionless 

function hT(µ/T)

•Measured to percent level:
• ξexp = 0.370(5)(8)

Ku, Sommer, Cheuk, and Zwierlein (2012)
Zürn, Lompe, Wenz, Jochim, Julienne, and Hutson (2013) corrected resonance

Unitary 
Equation of 

State
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FIG. 4. A Density and B pressure of a unitary Fermi gas versus µ/kBT , normalized by the density and pressure of a non-
interacting Fermi gas at the same chemical potential µ and temperature T . Red solid circles: experimental EoS. Dashed lines:
low-temperature behavior with � = 0.364, 0.376 and 0.389. Black dashed line: low-temperature behavior from the � upper
bound � = 0.383 [35]. Green open circles and black dashed line at 1.0: MIT experimental density and pressure, and theory for
the ideal Fermi gas. Blue solid squares (blue band): Diagrammatic Monte Carlo [18] for density (pressure). Solid green line:
3rd order Virial expansion. Open black squares: self-consistent T-matrix [22]. Open green circles: [32]. Orange star: [30]. Blue
star: [31]. Solid diamonds: ENS experiment [12]. Open diamonds: Tokyo experiment [11].

imum of µ/EF = 0.42(1) at T/TF = 0.171(10), and then
decreases at lower temperatures. This is expected for a
superfluid of paired fermions [22]. As the temperature
is increased from zero in a superfluid, phonons (sound
excitations) emerge that increase the chemical potential
µ. In addition, fermion pairs start to break and single
fermions contribute increasingly to the chemical poten-
tial with increasing temperature. At Tc, µ/EF must have
a sharp change in slope, as d(µ/EF )/d(T/TF ) involves
the singular compressibility. Indeed, the self-consistent
T-Matrix calculation shows a very clear peak in µ/EF

near Tc [22], in agreement with our observation. At low
temperatures, the reduced chemical potential µ/EF sat-
urates to the universal value �. As the internal energy
E and the free energy F satisfy E(T ) > E(T = 0) =
3
5N�EF = F (T = 0) > F (T ) for all T , the reduced
quantities fE ⇥ 5

3
E

NEF
= p̃ and fF ⇥ 5

3
F

NEF
= 5

3
µ
EF

� 2
3 p̃

provide upper and lower bounds for � [36], shown in Fig.
3A. Taking the coldest points of these three curves and
including the systematic error due to the e�ective inter-
action range, we find � = 0.376(5). The uncertainty in
the Feshbach resonance is expected to shift � by at most
2% [13]. This value is consistent with a recent upper
bound � < 0.383 [35], is close to � = 0.36(1) from a
self-consistent T-matrix calculation [22], and agrees with
� = 0.367(9) from an epsilon expansion [37]. It lies be-
low earlier estimates � = 0.44(2) [38] and � = 0.42(1) [39]
via fixed-node quantum Monte-Carlo that provide upper

bounds on �. Our measurement agrees with several less
accurate experimental determinations [5], but disagrees
with the most recent experimental value 0.415(10) that
was used to calibrate the pressure in [12], shown in Fig.
4B.

From the energy, pressure and chemical potential, we
can obtain the entropy S = 1

T (E + PV � µN). Shown
in Figure 3B is the entropy per particle S/NkB =
TF
T (p̃ � µ

EF
) as a function of T/TF . At high tempera-

tures, S is close to the entropy of an ideal Fermi gas at
the same T/TF . Down to Tc, neither the non-interacting
nor the unitary Fermi gas has S/N ⇤ kB . Also, the
specific heat CV is not linear in T . Thus it is question-
able to identify the normal regime as a Landau Fermi
Liquid, although some thermodynamic quantities agree
surprisingly well with the expectation for a Fermi liquid
(see [12] and [13]). Below about T/TF = 0.17 the en-
tropy starts to strongly fall o� compared to that of a
non-interacting Fermi gas, which we again interpret as
the freezing out of single-particle excitations due to for-
mation of fermion pairs. Far below the critical tempera-
ture for superfluidity, phonons dominate. They only have
a minute contribution to the entropy [22], less than 0.02
kB at T/TF = 0.1, consistent with our measurements.
At the critical point we obtain Sc = 0.73(13)NkB , in
agreement with [22]. It is encouraging for cold atom ex-
periments that we obtain very low entropies, less than
0.04NkB , far below critical entropies required to reach

P =
⇤
ThT

�µ
T

⇥⌅5/2
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D.T. Son and M. Stephanov (2005)
P-wave states by A.Bulgac, M.M.Forbes, A.Schwenk (PRL 2006)

Bec-Bcs Crossover 
Phase Diagram (T=0)

Grand canonical

Bcs-bec Crossover

No solid evidence for 
what happens in the 
middle here

Need precision 
measurements 

δµ
/Δ

0

-1/(kFa)0
0

1

P1

P2

BEC

Fully Polarized (One Species)
Fermi Gas

BCS

FFLO???

?
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D.T. Son and M. Stephanov (2005)
P-wave states by A.Bulgac, M.M.Forbes, A.Schwenk (PRL 2006)

Symmetric
Matter

Equal Fermi surfaces

δµ
/Δ

0

-1/(kFa)0
0

1

P1

P2

BEC

Fully Polarized (One Species)
Fermi Gas

BCS

FFLO???

?

Fermi Surface

a b

kFa kFb
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D.T. Son and M. Stephanov (2005)
P-wave states by A.Bulgac, M.M.Forbes, A.Schwenk (PRL 2006)

Symmetric
BCS State

Zero momentum pairs

δµ
/Δ

0

-1/(kFa)0
0

1

P1

P2

BEC

Fully Polarized (One Species)
Fermi Gas

BCS

FFLO???

? a b

kFa kFb

Cooper Pairs

p=pa+pb=0

a>0

(BCS)
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D.T. Son and M. Stephanov (2005)
P-wave states by A.Bulgac, M.M.Forbes, A.Schwenk (PRL 2006)

Symmetric
Unitary Gas

Zero momentum pairs

δµ
/Δ

0

-1/(kFa)0
0

1

P1

P2

BEC

Fully Polarized (One Species)
Fermi Gas

BCS

FFLO???

? a b

kFa kFb

p=pa+pb=0

a=∞

(Unitarity)
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D.T. Son and M. Stephanov (2005)
P-wave states by A.Bulgac, M.M.Forbes, A.Schwenk (PRL 2006)

Symmetric
BEC State

Tightly bound pairs

δµ
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-1/(kFa)0
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1
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Fully Polarized (One Species)
Fermi Gas

BCS

FFLO???

? a b

BEC

p=pa+pb=0

a>0

(BEC)
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D.T. Son and M. Stephanov (2005)
P-wave states by A.Bulgac, M.M.Forbes, A.Schwenk (PRL 2006)

Asymmetric?

Unequal Fermi surfaces
•Frustrates pairing
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D.T. Son and M. Stephanov (2005)
P-wave states by A.Bulgac, M.M.Forbes, A.Schwenk (PRL 2006)

Asymmetric
P-wave pairs

Kohn-Luttinger implies 
attractive at some l

Two coexisting 
superfluids

δµ
/Δ

0

-1/(kFa)0
0

1

P1

P2

BEC

Fully Polarized (One Species)
Fermi Gas

BCS

FFLO???

?

Intra-species
P-wave Pairs

a b

kFa

kFb

order unity.) We therefore conclude that the P-wave su-
perfluid/BEC phase P1 may be observed in asymmetric
Fermi gases as one approaches the S-wave Feshbach reso-
nance from the BEC regime.

Our results are justified in weak coupling. The omitted
preexponential factors, however, depend on higher-order
induced interactions. It is expected that the resulting fac-
tors are of order unity. We also note that the pairing
interaction induced by single phonon exchange is related
to the effective mass m!=m " 1# F1=3 through the
Landau parameter F1 " $NFUP. Effective mass correc-
tions are thus higher order, but they would increase the
density of states at the Fermi surface, and thus increase the
magnitude of the P-wave gap and TP

c .
BCS regime.—Next, we show that all proposed asym-

metric Fermi-liquid phases are unstable towards a two-
component P-wave superfluid due to the exchange of
density fluctuations. This occurs in the BCS regime and
is denoted by P2 in our phase diagram Fig. 1. We start from
a two-component asymmetric Fermi gas with Fermi mo-
menta k"F > k#F, and calculate the induced interactions in
weak coupling. To lowest order in the S-wave interaction
4!a@2=m, the induced interaction for back-to-back scat-
tering is given by [15]:

U↑↑
ind(0, p⃗1 − p⃗2) = ↓ ↓

p⃗1,↑ −p⃗1,↑

p⃗2,↑ −p⃗2,↑

= −N↓
F

(
4πa!2

m

)2

L |p⃗1 − p⃗2| / (2!k↓
F)

)
. (14)

The induced interaction for the minority fermions is ob-
tained by interchanging the spin labels. As before, in weak
coupling we neglect the frequency dependence and con-
sider momenta on the Fermi surface. Thus, L%y& denotes
the static Lindhard function

 L%y& " 1

2
# 1$ y2

4y
ln
!!!!!!!!
1# y
1$ y

!!!!!!!!: (15)

The importance of induced interactions for superfluidity
has been pointed out for symmetric Fermi systems: in weak
coupling for S-wave pairing [16], for P-wave pairing with
repulsive interaction [17], and close to the Feshbach reso-
nance [18] based on [19]. In addition, it has been shown
that induced interactions significantly suppress the super-
fluid gaps in neutron stars [20,21]. For P-wave pairing in
neutron stars, it is known that central induced interactions
are attractive [22], but repulsive spin-orbit fluctuations
dominate this effect [21].

The resulting P-wave superfluid gap for the majority
component is given by !"

P ' ""F exp(1=%N"
FU

""
P&), where U""

p

denotes the P-wave projection of the induced interaction as
in Eq. (5) [23]. This leads to

 

!"
P

""F
' exp

"
$ !2

4k"Fk
#
Fa

2L1%k"F=k#F&

#
; (16)

with the P-wave superfluid gap for the minority component
given by interchanging the spin labels. The asymmetry
enters through the function
 

L1%z& "
5z2 $ 2

15z4
lnj1$ z2j$ z2 # 5

30z
ln
!!!!!!!!
1$ z
1# z

!!!!!!!!$
z2 # 2

15z2
;

which has the limiting behavior

 L1%z& !

8><
>:

z2=18 where z * 1;
"# %7$ 4 ln2&%z$ 1&=15 where z + 1;
2 ln%z&=%3z2& where z , 1:

For the symmetric case, we recover the result of [17], !P '
"F exp($!2=%4k2Fa2"&), with " " %2 ln2$ 1&=5; however,
the work of [17] considered repulsive S-wave interactions.
In our case, interspecies S-wave pairing will dominate for
the symmetric system. The phase P2 will start for some
small but finite asymmetry, and the deviations in the ex-
ponent will be linear in (z$ 1).

For large asymmetries k"F , k#F, the P-wave gap of the
majority component is

 

!"
P

""F
' exp

"
$ 3!2

2%2k#Fa&2 ln%k"F=k#F&
k"F
k#F

#
; (17)

while that of the minority component is

 

!#
P

"#F
' exp

"
$ 18!2

%2k#Fa&2
k"F
k#F

#
: (18)

The majority component has a larger gap, but both are
suppressed for large asymmetry.

For fixed k#F, the minority gap !#
P decreases monotoni-

cally for increasing asymmetry, while for fixed k"F, the
majority gap !"

P has a maximum at k#F + 0:77k"F, due to
the maximum of L1%z&=z " 0:11 for z " 1:3:

 

!";max
P

""F
' exp

"
$ !2

0:11%2k"Fa&2
#
: (19)

Finally, we note that the P2 phase does not destabilize
LOFF, or similar phases, whose condensation energy is
parametrically the same as that of the S-wave BCS phase
where !S ' exp%!=2kFa&. Thus, the P-wave energy gain
is parametrically smaller in weak coupling.

Discussion.—Several asymmetric phases proposed in
the literature contain Fermi surfaces, including the normal
Fermi-liquid phases as well as the gapless breached pair
phases. Kohn and Luttinger [24] pointed out that, at zero
temperature, all Fermi surfaces are unstable in the presence
of interactions. We have shown that, in weak coupling,
induced interactions lead to the formation of P-wave
superfluids with maximal gaps for intermediate asymme-
tries. Thus, the suggested normal Fermi-liquid phases and

PRL 97, 020402 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
14 JULY 2006

020402-3
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D.T. Son and M. Stephanov (2005)
P-wave states by A.Bulgac, M.M.Forbes, A.Schwenk (PRL 2006)

Asymmetric
P-wave BEC

BEC and P-wave 
superfluids coexist 
homogeneously
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D.T. Son and M. Stephanov (2005)
P-wave states by A.Bulgac, M.M.Forbes, A.Schwenk (PRL 2006)

Asymmetric
Gapless SF

“Breach” in pairing 

Still induced P-wave
May need large mass ratio 
or structured interactions 
(not likely at weak coupling 
in cold atoms)

δµ
/Δ

0

-1/(kFa)0
0

1
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BEC

Fully Polarized (One Species)
Fermi Gas

BCS

FFLO???

?

Pairing promotes
particles?

a b

kFa

kFb
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D.T. Son and M. Stephanov (2005)
P-wave states by A.Bulgac, M.M.Forbes, A.Schwenk (PRL 2006)

Asymmetric
FFLO

State (LO) is crystal 
(supersolid)

Pairs have momentum

δµ
/Δ

0

-1/(kFa)0
0

1

P1

P2

BEC

Fully Polarized (One Species)
Fermi Gas

BCS

FFLO???

?

Pairs have 
Momenta?

a b

kFa

kFb

p=pa+pb≠0
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Dany Page: http://www.astroscu.unam.mx/neutrones/NS-Picture/NS-Picture.html

Glitches
•Rapid increase in pulsation rate

•Anderson and Itoh (1975) 
suggested pinned superfluid 
vortices

Pulsar Astronomy by Andrew G. Lyne and Francis Graham-Smith
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P. Donati, P.M. Pizzochero Nucl. Phys. A742 (2004) 363

Avogadro, F. Barranco, R. A. Broglia, and E. Vigezzi, Nucl. Phys. A811 (2008) 378

Pinning from Statics

Energy calculations

•Must diagonalize to 
high precision
(subtraction involved)

•How to extract F(r)?

P. Avogadro et al. / Nuclear Physics A 811 (2008) 378–412 385

Fig. 5. (Left) The pinning energy Epinning is obtained taking the difference between the energy of the pinned con-
figuration (1), in which the vortex axis passes through the center of the nucleus, and the energy of the interstitial
configuration (2), in which the vortex is far from the nucleus. (Right) We rearrange the configurations on the left, in-
dicating that the pinning energy is equivalent to the difference between the energy cost to build the vortex on a nucleus
(Evor

nuc) and in uniform matter (Evor
unif), so that Epinning = Evor

nuc − Evor
unif.

(Fig. 6(b)), yielding Enucleus; one with Z = 0, ν = 1 (Fig. 6(c)), yielding Evortex; and finally,
one with Z = 0, ν = 0 (Fig. 6(d)), yielding Euniform. To obtain the correct pinning energy it is
essential that the calculations refer to the same asymptotic neutron density. In the calculations
(b) and (d), without the vortex, we use the same value of the neutron chemical potential λn,
yielding respectively an average number of neutrons Nnucleus and Nuniform in the cylindrical cell.
The presence of the vortex in calculations (a) and (c) leads in each case to a small decrease of
the number of particles. We compensate this reduction by a slight increase in the value of λn.
In practice, rather than attempting a very fine tuning of λn we prefer to account for the residual
difference in the number of particles adding the term

#Epinned = λn(Nnucleus − Npinned); #Evortex = λn(Nuniform − Nvortex) (10)

respectively to Epinned and to Evortex (cf. Table 3). We remark that a similar correction for protons
is not needed, because their number is exactly fixed, and equal either to 0 or to 40. Even if the pin-
ning energies represent only a small fraction of the total energy, of the order of 10−3–10−4, the
subtraction scheme we have just outlined produces numerically reliable results (cf. Appendix B),
which will be presented in the next section. One should notice that the size of the cylindrical
cell does not have to coincide with that of the physical Wigner–Seitz cell; it must only be large
enough, so as to lead to convergent results for Epinning. It is clear, however, that neglecting neigh-
bouring nuclei can be inconsistent, if the radius of the box becomes of the order of the lattice
constant. This point will be further discussed below in Section 4.3.

4. Results

We have performed calculations at different densities in the inner crust, ranging from n ≈
0.001 fm−3 to n ≈ 0.04 fm−3. Our discussion will be mostly based on the results obtained at
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Fig. 1. The two vortex–nucleus configurations used in our calculation: interstitial pinning (IP, left) and nuclear
pinning (NP, right). The cubes indicate the WS-cells, the spheres represent the nuclei in the middle of the cell and
the cylinders picture the position of the vortex core.

The pressure in the normal phase is then equal to

Pn(x) = 2
5

h̄2k2f,n(x)
2mn

nn(x) = 2
5
µfer,n(x)nn(x), (10)

while that in the superfluid phase is given by

Ps(x) =
[
2
5
µfer,s(x) + 1

4
∆2(x)

µfer,s(x)
− 3
4

∆(x)ns(x)
µfer,s (x)

δ∆(x)
δn(x)

]
ns(x). (11)

We can now describe the vortex–nucleus configurations in our model. We start by con-
sidering two cubic WS-cells, over which we will integrate the energies, and we put them
adjacent along a direction labeled as the x-axis. The vortex axis is aligned along the z di-
rection. At the center of each cell we have a nucleus and in the leftmost one we put the
origin of our Cartesian system of reference, so that the other nucleus lies on the x-axis.
The nuclear pinning (NP) configuration has the vortex passing through the nucleus at the
origin. The interstitial pinning (IP) configuration has the vortex equidistant between the
two nuclei (see Fig. 1).
So far, when discussing the neutrons in the WS-cell we have implicitly assumed that

they were all either in the normal phase (and thus without any vortex) or in the superfluid
phase (with one vortex-line singularity in the NP or IP configuration). However, the usual
hybrid state used in all previous calculations of pinning is also possible in the Thomas–
Fermi approach, namely the neutrons in the cell can be superfluid everywhere except in
the so-called vortex core, an axially symmetric region around the vortex axis where they
are normal. In order to fulfill the condition of hydrostatic equilibrium of the model, the
pressure of the normal phase must be equal to that of the superfluid one all along the
boundary of the vortex core. The thermodynamical equilibrium is already guaranteed by
taking the same µ for both phases.
More precisely, in the present semi-classical picture there are only two possible struc-

tures for a vortex which are consistent with mechanical equilibrium. The ‘mixed’ phase,
in which an axially symmetric surface coaxial with the vortex, SM(z), is determined by
the condition Ps(x) = Pn(x); in this phase matter is normal inside SM(z) and superfluid
outside (normal core). The ‘pure’ phase, in which matter is always superfluid, but with its
density going smoothly to zero along some other axially symmetric surface coaxial with the
vortex, SP (z), determined by the condition ns(x) = 0; in this phase there are no neutrons
inside SP (z) (empty core). We point out that the surfaces SM(z) and SP (z) unambiguously
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Pinning: Dynamics

Extract force with 
dynamical methods

•Scales well numerical:
No diagonalization

•Extract force at any 
separation

(HFB) functionals extract the pinning energy of a vortex on
a single nucleus using a cylindrical geometry. In particular,
the conclusion of Ref. [19] that the pinning force is repul-
sive (glitches would thereby require interstitial pinning)
was questioned by Ref. [21] but addressed in Ref. [20],
while a different set of calculations using the local density
approximation suggests that pinning is attractive over a
substantial region in the inner crust [18,22]. Moreover,
nearby vortices and the Casimir effect can significantly
polarize a nucleus—an effect absent in simple cylindrical
geometries—dramatically changing the nature of the nu-
clear pinning sites and disrupting the regularity of the
nuclear lattice [23].

Characterizing the nuclear-pinning interaction will thus
require fully 3D (unconstrained by symmetries) self-
consistent calculations using realistic nuclear functionals.
Highly accurate asymmetric stationary states in full 3D are
currently not feasible (these require a full diagonalization
of the single-particle Hamiltonian), but TDDFTalgorithms
can be applied to the unconstrained 3D problem (which
requires only applying the Hamiltonian), and scale well to
massively parallel supercomputers for both cold atoms and
nuclei, as has been demonstrated in Ref. [24]. We now
present a qualitatively new approach for calculating
vortex-pinning interactions, unencumbered by the afore-
mentioned issues, utilizing only real-time dynamics.

The idea, similar to the Stern-Gerlach experiment, is to
observe how a vortex moves when approached by a nu-
cleus. To zeroth order, the sign of the interaction is deter-
mined qualitatively by the direction of the motion (Fig. 1);
with a more careful inspection, one can extract the force-
separation relationship FðrÞ (Fig. 2).
We validate our procedure using a dynamical extended

Thomas-Fermi (ETF) model [25–28] equivalent to a
Gross-Pitaevskii equation (GPE) for bosonic ‘‘dimers’’
mB ¼ 2m of fermionic pairs, with an equation of state
EðnÞ / !"5=3 characterized by the Bertsch parameter ! $
0:37 tuned to consistently fit both quantum Monte Carlo
and experimental results [27]. Despite the computational
simplicity of the ETF model, it has been demonstrated to
quantitatively reproduce a range of low-energy dynamics
of both UFG experiments [26] and fermionic density
functional theory simulations [28]. The UFG should also
qualitatively model the dilute neutron superfluid in the
crust of neutron stars [5] due to the large neutron-neutron
scattering length ann $ %18:9 fm [29]. Thus, by using a
physically motivated model of the nuclear pairing potential
[15], we anticipate that these ETF calculations will provide
a fairly good approximation of future fermionic TDDFT
simulations.
To gain some intuition for the vortex-nucleus interaction,

consider the phenomenological Hall-Vinen-Iordanskii
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FIG. 1 (color online). Deflection of a vortex in the ETF model of trapped dilute neutron matter as a UFG by a repulsive (left panel)
and attractive (right panel) pinning potential VpinðrÞ ¼ &3:5 MeV=½1þ expðr=fm% 7:5Þ) moving on a straight line from left to right

at a constant subsonic velocity v $ 0:1cs. The trajectory of the vortex is shown by the (black) curve and the relative separation vector
between the pinning site, and the vortex core is shown as thin (white) lines for select times connecting the corresponding dots on the
trajectories. Initially the potential displaces the bulk superfluid, carrying the vortex to the right/left. Once the potential overlaps with
the vortex, the vortex rapidly moves down/up (almost) perpendicular to the force. In the frame shown on the left, the pinning site is just
to the left of the center (x $ %2:5 fm), and the vortex is moving (almost) perpendicular along the edge of the pinning potential. After
the potential has passed through, the vortex orbits in a counterclockwise circle direction due to boundary effects from the trap that can
be quantitatively described in this sharp, flat trap by placing an image vortex outside of the potential to cancel the tangential current at
the boundary: this induces a counterclockwise superflow vs in Eq. (1). The geometry of the right simulation is such that the potential
carries the vortex around almost the entire trap: this extended interaction allows the pinning potential to excite phonons in the system
visible as ripples in the circular trajectory.
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(HVI) equation (see Ref. [30] for a discussion) for a
vortex in 2D:

M€~rv ! ~fqp ¼ !s ~"# ð _~rv ! ~vsÞ þ ~Fv: (1)

Here, ~rv is the position of the vortex, the force ~Fv is per
unit length along the vortex, !s is the number density of the
‘‘background’’ superfluid, ~" ¼ 2#@~z is the quantized vor-
tex circulation, and ~vs is the ‘‘background’’ superfluid
velocity. This equation should only be taken as an intuitive
guide since terms on the left-hand side are ill-defined. The
‘‘mass of the vortex’’M, for example, depends strongly on

the way it is measured [31], and the force ~fqp due to
excited phonons has significant memory effects.

For slowly accelerating vortices, the contribution from
the term proportional to €~rv is small. Furthermore, if the
vortex and pinning site move sufficiently slowly, phonons

are not excited ( ~fqp ¼ 0), and we can ignore the entire left-
hand side of Eq. (1) [32]. This leaves the well-established
Magnus relationship !s ~"# ð _~rv ! ~vsÞ ' ! ~Fv relating the
force ~Fv applied to the vortex and its perpendicular veloc-
ity _~rv relative to the background superfluid velocity ~vs.
Thus, by observing the dynamical deflection of a vortex
from a nuclear pinning site, one can directly extract the
direction and approximate magnitude of the vortex-nucleus
force without requiring a subtle subtraction of energies.

In small systems, the Magnus relation can only be used
to estimate the magnitude of the force since the superfluid

density !s and velocity vs are not precisely defined, though
reasonable estimates can be obtained. With an external
pinning potential Vpinð ~rpin ! ~xÞ, however, one can directly
and unambiguously calculate the force on the pinning site:

~F pin ¼ !
Z

d3x
Vpinð ~rpin ! ~xÞ

~rpin
!ð ~xÞ: (2)

In the nuclear context where neutrons are present in the
both the pinning site (the nucleus) and the superfluid
medium, the force can be obtained in two ways: (1)
Eq. (2) can be directly applied to a Coulomb potential
(Vpin) that couples to the proton charge density (!)—this
will be the force that the vortex exerts on the nuclear
lattice—or (2) one can estimate the force using Newton’s
law ~Fpin ¼ mpin ~apin for a dynamic pinning site comprising
protons and entrained neutrons. The position of the
pinning site can be unambiguously defined as the center
of mass of the protons, and the effective mass mpin can be
estimated [33].
What remains is to prepare the initial conditions with a

vortex and nucleus interacting at various distances. The
traditional self-consistent approach requires diagonalizing
N # N matrices (N ¼ NxNyNz) which takesOðN3Þ opera-
tions. This is not feasible for realistic N ( 106, as each
iteration would required a day of supercomputing wall
time. Instead, one can use adiabatic state preparation
[34,35] which takes OðN2 logNÞ operations. The idea is
to adiabatically evolve in real time a state of some solvable
system to a desired initial state in the system of interest. For
example, starting with a noninteracting (Bose) gas trapped
in a harmonic potential VHOðrÞ ¼ mB!

2r2=2, we can form
either the ground state "GS / expð!mB!r2=2Þ, or an
exact vortex ‘‘Landau level’’ "$ / ðxþ iy! $Þ#
expð!mB!r2=2@Þ (stationary in a rotating frame) with
angular momentum lz ¼ N@=ð1þmB!$2=@Þ where $ is
the displacement of the vortex node from the center of the
harmonic trap. From this exact noninteracting state, we
adiabatically evolve the system to an interacting state in the
desired trapping potential Vtrap by simultaneously switch-
ing on the interaction s% and interpolating the trapping
potentials Vt ¼ ð1! sÞVHO þ sVtrap where s ¼ sðt=TÞ is a
smooth C1 switching function that goes from 0 to 1 over a
characteristic time T chosen to be longer than any intrinsic
time scale in the system:

From "GS we can generate the ground state, and from
"$¼0 we can generate a single vortex in the center of the
trap, both to high precision. The adiabatic state preparation
can be significantly accelerated by introducing a ‘‘quantum
friction’’ term to remove phonon noise [35]. With this
combined approach, one can efficiently produce almost
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FIG. 2 (color online). Here we demonstrate consistency in
dynamically extracting a vortex-pinning force. We use the
nuclear pairing potential [15] VpinðrÞ ¼ 0:75 MeV=½1þ
expðr=fm! 7:5Þ* at densities !( 0:045 fm!3 ' 0:28!sat. The
triangular (blue) points come from the computationally expen-
sive ‘‘stationary’’ method, while the solid (green) curve comes
from using the ‘‘dynamic’’ real-time evolution analogous to that
shown on the left panel of Fig. 1. The dotted (red) curve shows
the Magnus estimate for the force (1) using a Thomas-Fermi
approximation for !s and estimating ~vs from the image vortex
[36]. The double curves come from the pinning site moving in
then out.

PRL 110, 241102 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
14 JUNE 2013

241102-3

Saturday, November 1, 14



Density Functional 
Theory (DFT)

• The (exact) ground state density in any external 
potential V(x) minimizes a functional (Hohenberg 
Kohn):

• Functional may be complicated (non-local)
• Need to find physically motivated approximations

• (think adjustable Mean Field Theory)
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Density Functional 
Theory (DFT)

• Define functional with physically motivated model

• Fit parameters to experiment/QMC

• Functional extrapolates from small to large

• Seems very effective for the Unitary Fermi Gas
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Slda: Superfluid Local 
Density Approximation

• Three densities:
n≈〈a†a〉, τ≈〈∇a†∇a〉, ν≈〈ab〉

• Three parameters:
• Effective mass (m/α)
• Hartree (β), Pairing (g)

Forbes, Gandolfi, Gezerlis (2012)
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TDDFT (TDSLDA)

• Computational challenge: Finding initial (ground) state?
Root-finders requires repeated diagonalization of s.p. Hamiltonian
Slow and does not scale well
Only suitable for small problems or if symmetries can be used

ı⇤t⇥n = H[⇥]⇥n =

�
���2

2m � µ+U �†

� ��2

2m + µ�U

⇥�
un

vn

⇥

370 P. Donati, P.M. Pizzochero / Nuclear Physics A 742 (2004) 363–379

Fig. 1. The two vortex–nucleus configurations used in our calculation: interstitial pinning (IP, left) and nuclear
pinning (NP, right). The cubes indicate the WS-cells, the spheres represent the nuclei in the middle of the cell and
the cylinders picture the position of the vortex core.

The pressure in the normal phase is then equal to

Pn(x) = 2
5

h̄2k2f,n(x)
2mn

nn(x) = 2
5
µfer,n(x)nn(x), (10)

while that in the superfluid phase is given by

Ps(x) =
[
2
5
µfer,s(x) + 1

4
∆2(x)

µfer,s(x)
− 3
4

∆(x)ns(x)
µfer,s (x)

δ∆(x)
δn(x)

]
ns(x). (11)

We can now describe the vortex–nucleus configurations in our model. We start by con-
sidering two cubic WS-cells, over which we will integrate the energies, and we put them
adjacent along a direction labeled as the x-axis. The vortex axis is aligned along the z di-
rection. At the center of each cell we have a nucleus and in the leftmost one we put the
origin of our Cartesian system of reference, so that the other nucleus lies on the x-axis.
The nuclear pinning (NP) configuration has the vortex passing through the nucleus at the
origin. The interstitial pinning (IP) configuration has the vortex equidistant between the
two nuclei (see Fig. 1).
So far, when discussing the neutrons in the WS-cell we have implicitly assumed that

they were all either in the normal phase (and thus without any vortex) or in the superfluid
phase (with one vortex-line singularity in the NP or IP configuration). However, the usual
hybrid state used in all previous calculations of pinning is also possible in the Thomas–
Fermi approach, namely the neutrons in the cell can be superfluid everywhere except in
the so-called vortex core, an axially symmetric region around the vortex axis where they
are normal. In order to fulfill the condition of hydrostatic equilibrium of the model, the
pressure of the normal phase must be equal to that of the superfluid one all along the
boundary of the vortex core. The thermodynamical equilibrium is already guaranteed by
taking the same µ for both phases.
More precisely, in the present semi-classical picture there are only two possible struc-

tures for a vortex which are consistent with mechanical equilibrium. The ‘mixed’ phase,
in which an axially symmetric surface coaxial with the vortex, SM(z), is determined by
the condition Ps(x) = Pn(x); in this phase matter is normal inside SM(z) and superfluid
outside (normal core). The ‘pure’ phase, in which matter is always superfluid, but with its
density going smoothly to zero along some other axially symmetric surface coaxial with the
vortex, SP (z), determined by the condition ns(x) = 0; in this phase there are no neutrons
inside SP (z) (empty core). We point out that the surfaces SM(z) and SP (z) unambiguously
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Realtime Evolution

• No diagonalization needed for evolution
Just apply Hamiltonian
Use fft for kinetic term

• Efficient realtime evolution the scales well
Distribute wavefunctions over nodes
Utilize gpus

• Split Operator or ABM evolution

ı⇤t⇥n = H[⇥]⇥n =

�
���2

2m � µ+U �†

� ��2

2m + µ�U

⇥�
un

vn

⇥
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Image Credit

Scaling Properties

SLDA realtime code
•Both Weak and 

Strong scaling

•Fully utilizes GPUs
(GPUs provide 90% of 
TITAN’s compute power)
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State Preparation?

• How to find initial (ground) state?

• Root-finders repeatedly diagonalize s.p. Hamiltonian
Slow and does not scale well

• Imaginary time evolution?
Non-unitary: spoils orthogonality of wavefunctions
Re-orthogonalization unfeasible (communication)
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Quantum Friction

• Unitary evolution (preserves orthonormality)

• Easy to compute: local time-dependent potential
Acts to remove local currents

• Couple with quasi-adiabatic state preparation
Bulgac, Forbes, Roche, and Wlazłowski (2013) [arXiv:1305.6891]

Vt � �
�h �� ·�jt

�t
=

�h�̇t

�t
� ��(�†

t�2�t)

�t
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Quantum Friction

• Consider evolution with potential H+Vt:

∂tE = -i Tr ([H,ρ]⋅Vt)

• Therefore Vt = i[H,ρ]† guarantees ∂tE ≤ 0
Non-local potential equivalent to “complex time” evolution
Not suitable for fermionic problem

• Diagonal version is a local potential: Vt = diag(i[H,ρ]†)

Vt � �
�h �� ·�jt

�t
=

�h�̇t

�t
� ��(�†

t�2�t)

�t
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Bulgac, Forbes, Kelley, Roche, Wlazłowski (2013) [arXiv:1306.4266]:
32x32x128

State Preparation

Saturday, November 1, 14



Harmonic oscillator with an excited state

Quantum Friction

Potential counteracts 
currents

Use with dynamics to 
minimize energy
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Harmonic oscillator with an excited state

Quantum Friction

Potential counteracts 
currents

Use with dynamics to 
minimize energy
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Harmonic oscillator with an excited state

Quantum Friction

Potential counteracts 
currents

Use with dynamics to 
minimize energy
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Quantum Friction

• General method: (works for many problems)
Needs a good initial state to ensure reasonable occupation numbers

• Easy to compute: local time-dependent potential
Acts to remove local currents

• Couple with quasi-adiabatic state preparation
Bulgac, Forbes,Roche, and Wlazłowski (2013) [arXiv:1305.6891]

Vt � �
�h �� ·�jt

�t
=

�h�̇t

�t
� ��(�†

t�2�t)

�t
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TDDFT (TDSLDA)

• Still Computationally expensive:
Need to evolve each hundreds of thousands of wavefunctions

• Possible for moderate systems (nuclei) using 
supercomputers, resonances, induced fission etc.
Maybe cold atoms (if axially symmetric etc.)
Probably not for neutron stars (glitching dynamics)

ı⇤t⇥n = H[⇥]⇥n =

�
���2

2m � µ+U �†

� ��2

2m + µ�U

⇥�
un

vn

⇥
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Bosons are “easy”

• Gross-Pitaevskii Equation (gpe)

• (all) bosons in single ground state
Include interactions through mean field

• Non-linear Schrödinger equation

• Only one wave function

E[�] =

�
3�x

�
�h2|��(�x)|2

2mB
+ VF(�x)⇥F + g

|�|4

2

⇥

⇤t� =

�
�

�2

2mB
+ [V + g|�|2]

⇥
�
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Fermions are harder

• Pauli Exclusion (blocking)
• Oarticles in different states

• Must track N wavefunctions
• Non-linear Schrödinger equation
for each wavefunction

Hartree-Fock–Bogoliubov (HFB), Bogoliubov de-Gennes (BdG)

• Must use symmetries or supercomputers

ı⇤t⇥n = H[⇥]⇥n =

�
���2

2m � µ+U �†

� ��2

2m + µ�U

⇥�
un

vn

⇥

Fermi Surface

a b

kFa kFb
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Gpe model for ufg

• Describe non-interacting particles:
• Schrödinger Equation

• Capture interactions through “mean field” V∝|Ψ|5
• Non-linear Schrödinger Equation

• Fermions require antisymmetrization (Pauli exclusion)
• Can use slda, but...

E[�] =

�
3�x

�
|��(�x)|2

4mF
+ VF(�x)�F + �E(�F)

�

�t� =

�
�

�2

4mF
+ 2

�
VF + ��(�F)

��
�
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Gpe model for ufg

• Bosonic model works remarkably well!

• Think:
• Boson = Fermion pair (dimer)

• Galilean Covariant (fixes mass)

• Match Unitary Equation of State

E[�] =

�
3�x

�
|��(�x)|2

4mF
+ VF(�x)�F + �E(�F)

�

�t� =

�
�

�2

4mF
+ 2

�
VF + ��(�F)

��
�

⇤F = 2|�|2

EFG � ⇤
5/2
F

⇥F = E �
FG(⇤F) � ⇤

3/2
F
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Matching Theories:
The Good

• Galilean Covariance (fixes mass/density relationship)

• Equation of State

• Hydrodynamics
• speed of sound (exact)
• phonon dispersion (to order q3)
• static response (to order q2)
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Matching Theories:
The Bad

• GPE has ρ=2|Ψ|2
• Density vanishes in core of vortex
• Implies ∫|Ψ|2 conserved

• (Approximate conservation ∫|Ψ|2 in Fermi 
simulations provides measure of applicability)

• No “normal state”
• Two fluid model needed?
• Coarse graining (transfer to “normal” component)
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Vortex Structure

1.2 realization from the gross -pitaevskii equation

plt.subplot(122)
plt.plot(x, np.sqrt(s.n(x)/a.bc[1]), ’�’ + c)

plt.subplot(121)
plt.plot(v.rho[:,0], v.rho[:,1], ’ : ’)
plt.axis([0,4,0,1])
plt.xlabel(’$k_F r$’)
plt. title (’$n/n_\infty$’)

plt.subplot(122)
plt.plot(v.delta[:,0], v.delta[:,1], ’ : ’)
plt.axis([0,4,0,1])
plt.xlabel(’$k_F r$’)
plt. title (’$\Delta/\Delta_\infty$’)
plt.legend(loc=’lower right’)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
kFr

0.0

0.2

0.4

0.6

0.8

1.0
n/n�

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
kFr

0.0

0.2

0.4

0.6

0.8

1.0
�/��

Figure 1: Comparison of slda vortex density (left) and gap (right) with
etf.
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Image Credit

Comparison
Fermions
SLDA TDDFT

Gross Pitaevskii
model

Bulgac et al. (Science 2011)
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Image Credit

Comparison
Fermions
SLDA TDDFT

Gross Pitaevskii
model

Bulgac et al. (Science 2011)

• Fermions:
• Simulation hard!
• Evolve 104-106 wavefunctions
• Requires supercomputers

• GPE:
• Simulation much easier!
• Evolve 1 wavefunction
• Use supercomputers to study 
large volumes
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Ancilotto, L. Salasnich, and F. Toigo (2012)

GPE vs. Experiment 
J Low Temp Phys

Fig. 4 1D density profiles at different times t showing the collision of two strongly interacting Fermi
clouds. Left part: our calculations [25]. Right part: experimental data from Ref. [40]. The normalized
density is in units of 10−2/µm per particle

We simulated the whole procedure by using the Runge-Kutta-Gill fourth-order
method [41, 42] to propagate in time the solutions of the following non-linear
Schrödinger equation (NLSE)

i! ∂

∂t
Ψ =

[
− !2

4m
∇2 + 2U(r) + 2

!2

2m

(
3π2)2/3

ξ |Ψ |4/3 + (1 − 4λ)
!2

4m

∇2|Ψ |
|Ψ |

]
Ψ

(31)

which is strictly equivalent [7, 8, 36, 37] to Eqs. (17) and (18), with E (n,∇n) given
by Eq. (4), and

Ψ (r, t) =
√

n(r, t) eiθ(r,t) (32)

Since the confining potential used in the experiments is cigar-shaped, we have ex-
ploited the resulting cylindrical symmetry of the system by representing the solution
of our NLSE on a 2-dimensional (r, z) grid. During the time evolution of our system,
when the two clouds start to overlap, many ripples whose wavelength is comparable
to the interparticle distance are produced in the region of overlapping densities. In or-
der to properly compare our results with the experimental data of resonant fermions
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From Cold Atoms to 
Neutron Stars

• Use (expensive) Fermi calculations to determine 
parameters (vortex nucleus interaction)
Validate with cold atoms
Time-dependent method scales well: Bulgac, Forbes and Sharma (2013)

• Fit a gpe-like theory
• Use this to model macroscopic dynamics
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Vortices: an application
• Resolving a Mystery:
MIT Heavy Solitons 
= Vortex Rings & Vortices
Fermionic dft for small systems 
validates bosonic model for realistic systems

• Vortex Reconnection
Experimental realization of the
mechanism behind quantum turbulence

• Apply to nuclear physics
Time-dependent fission
Pulsar glitches
Quantum turbulence

Feshbach resonance, in the unitarity limit where the scattering length
diverges, a substantial part of this filling is due to so-called Andreev
bound states, localized fermionic states bound to the soliton, also
known to reside inside vortex cores2. Here, the gas density in the vici-
nity of the soliton is predicted to be suppressed by 80% of the bulk
density, as opposed to 100% for solitons in BECs.

In the BCS limit of weak attractive interactions, the BdG equations
reduce to the Andreev equation, a Dirac equation where the pairing
gap D(z) plays the role of a spatially varying mass coupling particles
and holes3 (see Supplementary Information). The same equation des-
cribes solitons in conducting polymers5. The solution for the pairing
gap is known5 to be D(z) 5 D0 tanh(z/jBCS), as in the BEC limit, that
is, it is again represented by Fig. 1a but with j 5 jBCS, the BCS cohe-
rence length. The density profile of the localized state in Fig. 1a here
represents the fermionic Andreev bound state, as opposed to the den-
sity of uncondensed bosons in the BEC regime. Solitons in the BCS
regime are expected to be essentially completely filled in. Indeed, in this
limit of long-range overlapping Cooper pairs, only a minute fraction
of particles near the Fermi surface takes part in pairing, and the reduc-
tion of the pairing gap at the soliton affects the density only very weakly.

Creating solitons in a fermionic superfluid
The creation of solitons in a strongly interacting fermionic superfluid
poses several challenges. First, a superfluid with a soliton is not in its

ground state, so the temperature of the gas has to be low enough for
the soliton not to decay rapidly into thermal excitations. Such dissipa-
tion can proceed through collisions of the soliton with sound waves,
leading to its acceleration. When the soliton reaches a critical velocity,
it is expected to decay into phonons or, in the case of fermionic super-
fluids, pair excitations27,28,30. Second, solitons can generally decay into
vortices via the so-called snake instability13,15,31,32. In the case of weakly
interacting BECs in elongated traps, stability requires the chemical
potential m of the condensate to be not much larger than the transverse
confinement energy31. For a Fermi gas, this would require a quasi-one-
dimensional geometry where the transverse cloud width is one inter-
particle spacing. As we show below, this is not necessary. Last, for strongly
interacting superfluids, it is a priori not obvious that solitons are stable
against quantum fluctuations10,21–25,33.

Here we create and observe long-lived solitons in a strongly inter-
acting fermionic superfluid of 6Li atoms near a Feshbach resonance.
Solitons are created via phase imprinting (see Fig. 1b), a technique
successfully employed for weakly interacting Bose condensates11,12,14.
The superfluid containing typically ,2 3 105 atom pairs is prepared
in an elongated trap with cylindrical symmetry (axial and radial trap-
ping period respectively Tz 5 45–210 ms and TH 5 14 ms) and tun-
able aspect ratio l 5 Tz/TH (ref. 7). A green laser beam far detuned
from the atomic resonance is masked to shine on one half of the
superfluid. In a time t, the applied potential U, as experienced by a
single fermion, advances the phase of the superfluid order parameter
in the exposed region by Dw 5 2Ut/B relative to the unexposed region.
The time t < 35 ms is experimentally adjusted in order to create one
high-contrast soliton.

In the strongly interacting regime, the soliton does not cause a den-
sity depletion within our resolution. However, it is tied to a phase twist
in the pair wavefunction. As in the case of vortices34, the pair wave-
function can be directly observed via a rapid ramp to the BEC side of
the Feshbach resonance. The ramp converts large fermion pairs into
tightly bound molecules, empties out the soliton cores and increases
the soliton width to the final healing length !1

! ffiffiffiffiffiffiffiffiffiffi
nMaf
p

, where af is
the scattering length at the final magnetic field and nM the density of
molecules. The rapid ramp followed by time-of-flight expansion thus
enhances the soliton contrast and acts as a magnifying glass (for details,
see Supplementary Information).

Figure 1c and d report the observation of solitons in a fermionic
superfluid prepared at 815 G (close to the 832 G Feshbach resonance)
for various hold times following the phase imprint. Here, the inter-
action parameter at the cloud centre is 1/kFa 5 0.30(2), where a is the
scattering length and kF 5 (3p2n)1/3 is the Fermi wavevector, related
to the total central fermion density n and the Fermi energy EF~
h!2k2

F

!
2m. Figure 1c shows the optical density in absorption images

taken after time of flight and the rapid ramp to ,580 G, while Fig. 1d
displays residuals obtained by subtracting a smoothed copy of the
same absorption image. The optical density contrast of solitons is
about 10% (see Supplementary Information). A sequence of radially
integrated residuals as a function of time is displayed in Fig. 1e, dem-
onstrating the soliton to be stable for more than 4 s or 100,000 times
the microscopic timescale B/EF, the Fermi time. This establishes that
solitons in fermionic superfluids can exist as stable and long-lived
excitations that do not decay despite strong quantum fluctuations.

Soliton oscillations
The solitons are observed to undergo oscillations in the harmonically
trapped superfluid, demonstrating their emergent particle nature. The
motion is to a high degree deterministic, as soliton positions for different
realizations of the experiment at varying wait times lie on the same
classical sinusoidal trajectory. The force on the soliton is provided by
the trapping force experienced by the atoms missing in the soliton,
Nsmv2

z z:Mv2
z z, where vz 5 2p/Tz, jNsj is the number of missing

atoms, and M 5 Nsm , 0 the bare mass of the soliton. M is negative
as the soliton is a density depletion. Introducing the effective, or
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Figure 1 | Creation and observation of solitons in a fermionic superfluid.
a, Superfluid pairing gap D(z) for a stationary soliton, normalized by the bulk
pairing gap D0, and density n(z) of the localized bosonic (fermionic) state versus
position z, in the BEC (BCS) regime of the crossover, in units of the BEC healing
length (BCS coherence length) j. b, Diagram of the experiment. A phase-
imprinting laser beam twists the phase of one-half of the trapped superfluid by
approximately p. The soliton generally moves at non-zero velocity vsoliton.
c, Optical density and d, residuals (optical density minus a smoothed copy of the
same image) of atom clouds at 815 G, imaged via the rapid ramp method34,
showing solitons at various hold times after creation. One period of soliton
oscillation is shown. The in-trap aspect ratio was l 5 6.5(1). e, Radially integrated
residuals as a function of time revealing long-lived soliton oscillations. The soliton
period is Ts 5 12(2)Tz, much longer than the trapping period of Tz 5 93.76(5) ms,
revealing an extreme enhancement of the soliton’s relative effective mass, M*/M.
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MIT Experiment
• 6Li atoms (N≈106) cooled in harmonic trap

• Step potential used to imprint a soliton

• Let system evolve

• Image after ramping magnetic field B and expanding

• Observe an oscillating soliton with long period T≈12Tz
• Bosonic solitons (becs) oscillate with T≈√2Tz≈1.4Tz
• Fermionic solitons (bdg) oscillate with T≈1.7Tz
• Interpret as “Heavy Solitons”
• Later resolved as vortex rings and vortices

Yefsah et al. Nature 499 (2013) 426 [arXiv:1302.4736]
Ku et al. PRL 113 (2014) 065301
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Yefsah et al. Nature 499 (2013) 426 [arXiv:1302.4736]
Ku et al. PRL 113 (2014) 065301

MIT Experiment

Imprint soliton

Step potential
phases evolve to 
π phase shift

Flat domain wall 
(dark/grey soliton)

Feshbach resonance, in the unitarity limit where the scattering length
diverges, a substantial part of this filling is due to so-called Andreev
bound states, localized fermionic states bound to the soliton, also
known to reside inside vortex cores2. Here, the gas density in the vici-
nity of the soliton is predicted to be suppressed by 80% of the bulk
density, as opposed to 100% for solitons in BECs.

In the BCS limit of weak attractive interactions, the BdG equations
reduce to the Andreev equation, a Dirac equation where the pairing
gap D(z) plays the role of a spatially varying mass coupling particles
and holes3 (see Supplementary Information). The same equation des-
cribes solitons in conducting polymers5. The solution for the pairing
gap is known5 to be D(z) 5 D0 tanh(z/jBCS), as in the BEC limit, that
is, it is again represented by Fig. 1a but with j 5 jBCS, the BCS cohe-
rence length. The density profile of the localized state in Fig. 1a here
represents the fermionic Andreev bound state, as opposed to the den-
sity of uncondensed bosons in the BEC regime. Solitons in the BCS
regime are expected to be essentially completely filled in. Indeed, in this
limit of long-range overlapping Cooper pairs, only a minute fraction
of particles near the Fermi surface takes part in pairing, and the reduc-
tion of the pairing gap at the soliton affects the density only very weakly.

Creating solitons in a fermionic superfluid
The creation of solitons in a strongly interacting fermionic superfluid
poses several challenges. First, a superfluid with a soliton is not in its

ground state, so the temperature of the gas has to be low enough for
the soliton not to decay rapidly into thermal excitations. Such dissipa-
tion can proceed through collisions of the soliton with sound waves,
leading to its acceleration. When the soliton reaches a critical velocity,
it is expected to decay into phonons or, in the case of fermionic super-
fluids, pair excitations27,28,30. Second, solitons can generally decay into
vortices via the so-called snake instability13,15,31,32. In the case of weakly
interacting BECs in elongated traps, stability requires the chemical
potential m of the condensate to be not much larger than the transverse
confinement energy31. For a Fermi gas, this would require a quasi-one-
dimensional geometry where the transverse cloud width is one inter-
particle spacing. As we show below, this is not necessary. Last, for strongly
interacting superfluids, it is a priori not obvious that solitons are stable
against quantum fluctuations10,21–25,33.

Here we create and observe long-lived solitons in a strongly inter-
acting fermionic superfluid of 6Li atoms near a Feshbach resonance.
Solitons are created via phase imprinting (see Fig. 1b), a technique
successfully employed for weakly interacting Bose condensates11,12,14.
The superfluid containing typically ,2 3 105 atom pairs is prepared
in an elongated trap with cylindrical symmetry (axial and radial trap-
ping period respectively Tz 5 45–210 ms and TH 5 14 ms) and tun-
able aspect ratio l 5 Tz/TH (ref. 7). A green laser beam far detuned
from the atomic resonance is masked to shine on one half of the
superfluid. In a time t, the applied potential U, as experienced by a
single fermion, advances the phase of the superfluid order parameter
in the exposed region by Dw 5 2Ut/B relative to the unexposed region.
The time t < 35 ms is experimentally adjusted in order to create one
high-contrast soliton.

In the strongly interacting regime, the soliton does not cause a den-
sity depletion within our resolution. However, it is tied to a phase twist
in the pair wavefunction. As in the case of vortices34, the pair wave-
function can be directly observed via a rapid ramp to the BEC side of
the Feshbach resonance. The ramp converts large fermion pairs into
tightly bound molecules, empties out the soliton cores and increases
the soliton width to the final healing length !1

! ffiffiffiffiffiffiffiffiffiffi
nMaf
p

, where af is
the scattering length at the final magnetic field and nM the density of
molecules. The rapid ramp followed by time-of-flight expansion thus
enhances the soliton contrast and acts as a magnifying glass (for details,
see Supplementary Information).

Figure 1c and d report the observation of solitons in a fermionic
superfluid prepared at 815 G (close to the 832 G Feshbach resonance)
for various hold times following the phase imprint. Here, the inter-
action parameter at the cloud centre is 1/kFa 5 0.30(2), where a is the
scattering length and kF 5 (3p2n)1/3 is the Fermi wavevector, related
to the total central fermion density n and the Fermi energy EF~
h!2k2

F

!
2m. Figure 1c shows the optical density in absorption images

taken after time of flight and the rapid ramp to ,580 G, while Fig. 1d
displays residuals obtained by subtracting a smoothed copy of the
same absorption image. The optical density contrast of solitons is
about 10% (see Supplementary Information). A sequence of radially
integrated residuals as a function of time is displayed in Fig. 1e, dem-
onstrating the soliton to be stable for more than 4 s or 100,000 times
the microscopic timescale B/EF, the Fermi time. This establishes that
solitons in fermionic superfluids can exist as stable and long-lived
excitations that do not decay despite strong quantum fluctuations.

Soliton oscillations
The solitons are observed to undergo oscillations in the harmonically
trapped superfluid, demonstrating their emergent particle nature. The
motion is to a high degree deterministic, as soliton positions for different
realizations of the experiment at varying wait times lie on the same
classical sinusoidal trajectory. The force on the soliton is provided by
the trapping force experienced by the atoms missing in the soliton,
Nsmv2

z z:Mv2
z z, where vz 5 2p/Tz, jNsj is the number of missing

atoms, and M 5 Nsm , 0 the bare mass of the soliton. M is negative
as the soliton is a density depletion. Introducing the effective, or
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Figure 1 | Creation and observation of solitons in a fermionic superfluid.
a, Superfluid pairing gap D(z) for a stationary soliton, normalized by the bulk
pairing gap D0, and density n(z) of the localized bosonic (fermionic) state versus
position z, in the BEC (BCS) regime of the crossover, in units of the BEC healing
length (BCS coherence length) j. b, Diagram of the experiment. A phase-
imprinting laser beam twists the phase of one-half of the trapped superfluid by
approximately p. The soliton generally moves at non-zero velocity vsoliton.
c, Optical density and d, residuals (optical density minus a smoothed copy of the
same image) of atom clouds at 815 G, imaged via the rapid ramp method34,
showing solitons at various hold times after creation. One period of soliton
oscillation is shown. The in-trap aspect ratio was l 5 6.5(1). e, Radially integrated
residuals as a function of time revealing long-lived soliton oscillations. The soliton
period is Ts 5 12(2)Tz, much longer than the trapping period of Tz 5 93.76(5) ms,
revealing an extreme enhancement of the soliton’s relative effective mass, M*/M.
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ℏ∂t(δφ) = δV  (phase difference on either side of trap)
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Yefsah et al. Nature 499 (426) 2013 [arXiv:1302.4736]

MIT Experiment

Thick solitons
• 10 × coherence length

Slowly moving 
T≈12Tz

Theory (Walls):
T ~ 1.2-1.4Tz

Is theory wrong?

Feshbach resonance, in the unitarity limit where the scattering length
diverges, a substantial part of this filling is due to so-called Andreev
bound states, localized fermionic states bound to the soliton, also
known to reside inside vortex cores2. Here, the gas density in the vici-
nity of the soliton is predicted to be suppressed by 80% of the bulk
density, as opposed to 100% for solitons in BECs.

In the BCS limit of weak attractive interactions, the BdG equations
reduce to the Andreev equation, a Dirac equation where the pairing
gap D(z) plays the role of a spatially varying mass coupling particles
and holes3 (see Supplementary Information). The same equation des-
cribes solitons in conducting polymers5. The solution for the pairing
gap is known5 to be D(z) 5 D0 tanh(z/jBCS), as in the BEC limit, that
is, it is again represented by Fig. 1a but with j 5 jBCS, the BCS cohe-
rence length. The density profile of the localized state in Fig. 1a here
represents the fermionic Andreev bound state, as opposed to the den-
sity of uncondensed bosons in the BEC regime. Solitons in the BCS
regime are expected to be essentially completely filled in. Indeed, in this
limit of long-range overlapping Cooper pairs, only a minute fraction
of particles near the Fermi surface takes part in pairing, and the reduc-
tion of the pairing gap at the soliton affects the density only very weakly.

Creating solitons in a fermionic superfluid
The creation of solitons in a strongly interacting fermionic superfluid
poses several challenges. First, a superfluid with a soliton is not in its

ground state, so the temperature of the gas has to be low enough for
the soliton not to decay rapidly into thermal excitations. Such dissipa-
tion can proceed through collisions of the soliton with sound waves,
leading to its acceleration. When the soliton reaches a critical velocity,
it is expected to decay into phonons or, in the case of fermionic super-
fluids, pair excitations27,28,30. Second, solitons can generally decay into
vortices via the so-called snake instability13,15,31,32. In the case of weakly
interacting BECs in elongated traps, stability requires the chemical
potential m of the condensate to be not much larger than the transverse
confinement energy31. For a Fermi gas, this would require a quasi-one-
dimensional geometry where the transverse cloud width is one inter-
particle spacing. As we show below, this is not necessary. Last, for strongly
interacting superfluids, it is a priori not obvious that solitons are stable
against quantum fluctuations10,21–25,33.

Here we create and observe long-lived solitons in a strongly inter-
acting fermionic superfluid of 6Li atoms near a Feshbach resonance.
Solitons are created via phase imprinting (see Fig. 1b), a technique
successfully employed for weakly interacting Bose condensates11,12,14.
The superfluid containing typically ,2 3 105 atom pairs is prepared
in an elongated trap with cylindrical symmetry (axial and radial trap-
ping period respectively Tz 5 45–210 ms and TH 5 14 ms) and tun-
able aspect ratio l 5 Tz/TH (ref. 7). A green laser beam far detuned
from the atomic resonance is masked to shine on one half of the
superfluid. In a time t, the applied potential U, as experienced by a
single fermion, advances the phase of the superfluid order parameter
in the exposed region by Dw 5 2Ut/B relative to the unexposed region.
The time t < 35 ms is experimentally adjusted in order to create one
high-contrast soliton.

In the strongly interacting regime, the soliton does not cause a den-
sity depletion within our resolution. However, it is tied to a phase twist
in the pair wavefunction. As in the case of vortices34, the pair wave-
function can be directly observed via a rapid ramp to the BEC side of
the Feshbach resonance. The ramp converts large fermion pairs into
tightly bound molecules, empties out the soliton cores and increases
the soliton width to the final healing length !1

! ffiffiffiffiffiffiffiffiffiffi
nMaf
p

, where af is
the scattering length at the final magnetic field and nM the density of
molecules. The rapid ramp followed by time-of-flight expansion thus
enhances the soliton contrast and acts as a magnifying glass (for details,
see Supplementary Information).

Figure 1c and d report the observation of solitons in a fermionic
superfluid prepared at 815 G (close to the 832 G Feshbach resonance)
for various hold times following the phase imprint. Here, the inter-
action parameter at the cloud centre is 1/kFa 5 0.30(2), where a is the
scattering length and kF 5 (3p2n)1/3 is the Fermi wavevector, related
to the total central fermion density n and the Fermi energy EF~
h!2k2

F

!
2m. Figure 1c shows the optical density in absorption images

taken after time of flight and the rapid ramp to ,580 G, while Fig. 1d
displays residuals obtained by subtracting a smoothed copy of the
same absorption image. The optical density contrast of solitons is
about 10% (see Supplementary Information). A sequence of radially
integrated residuals as a function of time is displayed in Fig. 1e, dem-
onstrating the soliton to be stable for more than 4 s or 100,000 times
the microscopic timescale B/EF, the Fermi time. This establishes that
solitons in fermionic superfluids can exist as stable and long-lived
excitations that do not decay despite strong quantum fluctuations.

Soliton oscillations
The solitons are observed to undergo oscillations in the harmonically
trapped superfluid, demonstrating their emergent particle nature. The
motion is to a high degree deterministic, as soliton positions for different
realizations of the experiment at varying wait times lie on the same
classical sinusoidal trajectory. The force on the soliton is provided by
the trapping force experienced by the atoms missing in the soliton,
Nsmv2

z z:Mv2
z z, where vz 5 2p/Tz, jNsj is the number of missing

atoms, and M 5 Nsm , 0 the bare mass of the soliton. M is negative
as the soliton is a density depletion. Introducing the effective, or
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Figure 1 | Creation and observation of solitons in a fermionic superfluid.
a, Superfluid pairing gap D(z) for a stationary soliton, normalized by the bulk
pairing gap D0, and density n(z) of the localized bosonic (fermionic) state versus
position z, in the BEC (BCS) regime of the crossover, in units of the BEC healing
length (BCS coherence length) j. b, Diagram of the experiment. A phase-
imprinting laser beam twists the phase of one-half of the trapped superfluid by
approximately p. The soliton generally moves at non-zero velocity vsoliton.
c, Optical density and d, residuals (optical density minus a smoothed copy of the
same image) of atom clouds at 815 G, imaged via the rapid ramp method34,
showing solitons at various hold times after creation. One period of soliton
oscillation is shown. The in-trap aspect ratio was l 5 6.5(1). e, Radially integrated
residuals as a function of time revealing long-lived soliton oscillations. The soliton
period is Ts 5 12(2)Tz, much longer than the trapping period of Tz 5 93.76(5) ms,
revealing an extreme enhancement of the soliton’s relative effective mass, M*/M.
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Density Functional 
Theory (dft)

• Superfluid Local Density Approximation (slda)
• Well tested for statical properties
• Can we also use for dynamics
• Expensive

 (one of the largest supercomputing calculations to date)

• Effective Thomas-Fermi (etf) model
• “Bosonic model” (gpe with correct eos)
• Not as reliable, but can be scaled up
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Vortex Rings in a Trap

• MI: Inertial (kinetic mass) differs significantly from

• MVR: Mass depletion

• Long periods
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Yefsah et al. Nature 499 (426) 2013 [arXiv:1302.4736]

MIT Experiment

Subtle imaging:
• Need expansion

(turn off trap)
• Must ramp to 
B<700G

•~10% depletion
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SUPPLEMENTARY INFORMATION
doi:10.1038/nature12338

Supplementary information:
Heavy Solitons in a Fermionic Superfluid

Tarik Yefsah, Ariel T. Sommer, Mark J.H. Ku, Lawrence W. Cheuk, Wenjie Ji, Waseem S. Bakr, and Martin W.
Zwierlein

Imaging Solitons

Figure S 1: Imaging solitons. a Optical density, b integrated 1D profiles and c corresponding residuals of a fermionic
superfluid, prepared at 832G, after expansion and rapid ramp to various final magnetic fields Bmin. Without any ramp,
the superfluid at 832G, observed after 9 ms time of flight, does not show a clear signature of the soliton. A 10 ms ramp
to the BEC-side before expansion at 760G reduces interactions but still only reveals a very faint trace of the soliton.
For Bmin < 700G the soliton is revealed. d Sequence of the magnetic field ramp, indicating time of flight (TOF),
final ramp field Bmin and the imaging pulse at 760G. e The maximum depletion detected in the optical density, in
units of the standard deviation σ found outside the soliton. The detection threshold of 2.5 σ is indicated.

Solitons gradually fill in as the interaction strength is tuned from the BEC-regime to the BCS-regime of the
crossover. Indeed, in the BCS regime only a minute fraction ∆0/EF of the gas is Cooper paired, and only this fraction
is missing at the soliton’s center, where the pair wavefunction ∆(z) is maximally depleted. The contrast in the particle
density thus vanishes. Indeed, absorption images of atom clouds at the Feshbach resonance, in-situ or after expansion
(Fig. S 1 a), do not show any observable (! 3%) contrast. Given our signal to noise (1 σ fluctuations corresponding to
a ∼ 3% density ripple) and finite resolution of 3µm, and assuming a soliton width as found from the BdG equation 1,
this gives a lower bound on the soliton filling of 91%. The BdG equations predict a filling of only 20%.

While the soliton is not visible in situ, the modulus of the pair wavefunction itself can be imaged by a rapid
ramp technique similar to what was used for the observation of vortex lattices in the BEC-BCS crossover 2, 3. A
magnetic field ramp to the weakly interacting BEC-regime turns large fermion pairs into molecules. An absorption
image of molecules thus approximately reflects the magnitude of the fermion pair wavefunction before the ramp. In
addition, the ramp reduces the interaction strength and thus increases the coherence (healing) length of the superfluid,

1

which increases the soliton contrast and increases their width.
The rapid ramp is illustrated in Fig. S 1. Starting for example with a superfluid at the Feshbach resonance,

the magnetic field is first quickly ramped over 10 ms to 760 G, on the BEC-side of the Feshbach resonance where
interactions are weaker and fermion pairs are more tightly bound. Next, the cloud is released from the trap. After
1 ms, the magnetic field is rapidly ramped over 1 ms to ∼ 580 G, where interactions are essentially absent and fermion
pairs have fully turned into tightly bound molecules. The molecular cloud further expands for 4 ms at 580G, after
which the magnetic field is re-ramped over 1 ms to 760G. After an additional 2 ms of expansion at 760 G, the
molecules are imaged via absorption imaging.

Solitons can be identified easily in the absorption images by eye. However, to automize soliton detection we
implemented the following method. For each absorption image, we first generate a residual profile by subtracting a
smoothened version of the optical density profile from the actual optical density profile. We determine the standard
deviation of fluctuations σ and identify a depletion in the residual profile as a soliton if its depth is greater than 2.5 σ.

We have found the rapid ramp technique necessary to reveal solitons in the strongly interacting regime, which
is another indication of their strong filling, next to their slow period and enhanced relative effective mass. To show the
importance of the rapid ramp, we have varied the final field of the rapid ramp Bmin between 500 and 832 G. The depth
of the maximum depletion, normalized by σ, is shown in Fig S 1. For ramp fields Bmin < 650G solitons are clearly
revealed.

Speed of sound measurement

The phase imprinting not only changes the
phase of the superfluid, but also perturbs the
density, creating a sound wave. Fig. S 2 shows
the evolution of the cloud profile during the
first 100 ms after a phase imprinting pulse at
the Feshbach resonance. A sound wave is seen
to propagate away from the potential barrier.
It disappears at the edge of the atom cloud,
after about 40 ms. Adjusting for the expan-
sion during time of flight, the speed of sound
is found to be 8.8 mm/s, agreeing with the
expectation for the zero-temperature speed of
sound c =

√
ξ/3 vF with ξ = 0.37, to within

2%. Note that the soliton sequences shown in
the main text start 400 ms after the phase im-
print, long after the initial sound wave has dis-
appeared.
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Figure S 2: Speed of
sound measurement.
a Integrated 1D density
profiles after rapid ramp
and time of flight, for the
first 100 ms after applying
the phase imprinting pulse
at the Feshbach resonance,
at 832G. A sound wave is
clearly observed. b same
as a), with a line marking
the sound wave.

Snake Instability
Planar solitons in three dimensions are not only thermodynamically unstable towards accelerating, but also dynam-
ically unstable towards shape excitations - the so-called “snake” instability 4–8. This excitation of the soliton plane
along the radial direction grows exponentially until the soliton decays into vortices. This is suppressed in elongated
trap geometries. In weakly interacting BECs, solitons are expected to become dynamically unstable when the chem-
ical potential µ of the condensate becomes larger than ≈ 2.4!ω⊥, where ω⊥ is the radial trapping frequency 4. The
solitons in our strongly interacting fermionic superfluid appear to be much more robust, as they are long-lived even
when the chemical potential µ ≈ 35!ω⊥. Still, we were able to observe the snake instability by reducing the trap
aspect ratio to about 3. Examples are shown in Fig. S 3 where the depletion revealed by the rapid ramp no longer
follows a straight line but rather a wavy trajectory, characteristic of the snake instability 6–8.

2

Saturday, November 1, 14



Bulgac, Forbes, Kelley, Roche, Wlazłowski (2013) [arXiv:1306.4266]

Imaging Vortex Rings

Saturday, November 1, 14



Bulgac, Forbes, Kelley, Roche, Wlazłowski (2013) [arXiv:1306.4266]

Imaging Vortex Rings

Saturday, November 1, 14



Bulgac, Forbes, Kelley, Roche, Wlazłowski (2013) [arXiv:1306.4266]

Imaging Vortex Rings

Saturday, November 1, 14



Bulgac, Forbes, Kelley, Roche, Wlazłowski (2013) [arXiv:1306.4266]

Imaging Vortex Rings

Saturday, November 1, 14



Vortex Motion
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Experiment MIT 2014
No Axial Symmetry!

Better tomographic 
imaging reveals vortex

Gravity breaks trap 
asymmetry

Only imaged in one 
direction

Width consistent with 
a vortex core ~ lcoh

Ku et al. PRL 113 (2014) 065301
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Vortex Reconnection
Quantum Turbulence

Paoletti, Fisher, Sreenivasan, and Lathrop, 
PRL 101, 154501 (2008)

• Vortex reconnection: the origin of quantum turbulence
• Feynman 1955
• Very few experimental realizations
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one may need to quantitatively understand energy loss
during crossing and recombination as inputs to glitching
models (see e.g. [10]). The UFG provides an almost ideal
laboratory study these phenomena and benchmark the
SLDA. Using multiple tilted imprints, for example, one
can control the generation and arrangement of multiple
vortices in order to study collisions, reconnection, and
interactions. The UFG and SLDA thus provides a new
microscopic framework to study aspects of quantum tur-
bulence in a strongly interacting system, complementing
weakly-interacting dilute Bose gases [30, 31] modelled with
the GPE as the only microscopic frameworks presently
available for studying superfluid dynamics.

The phase imprint technique can be also utilized to cre-
ate turbulent states with many tangled vortices. Here we
demonstrate one approach, adding a phase imprint [2, 3]
to a lattice of vortices which can be created experimentally
by stirring using laser beams [? ]. In Fig. 5 we show con-
secutive frames of turbulent motion exhibiting crossings
and recombinations of quantized vortices in an elongated
harmonic trap. The simulation was done in a 48

2 ⇥ 128

box comprising 1410 fermions (see supplemental mate-
rial [16] for a movie). We also show the corresponding
probability distribution function (PDF) of the velocities
for longitudinal v

k

and transverse v

?

components of the
velocity (with respect to long axis).

We start with the ground state of a cloud cut in half
with a knife-edge potential. We then stir the system with
two circulating laser beams parallel to the long axis of
the trap. Once a vortex lattice is generated, we imprint a
⇡ phase shift between the halves. Just before removing
the edge knife, we introduce a slight tilt to speed the
formation of a vortex tangle. After the knife-edge is
removed, the vortex lines twist, cross, and reconnect.
From the velocity PDFs one sees a clear departure from
gaussian behaviour as the tangle evolves – a hallmark of
quantum turbulence. Eventually the system relaxes to a
vortex lattice and equilibrates in v

k

. Somewhat similar
velocity PDFs are seen in theoretical studies of dilute
Bose gases [32] and in phenomenological filament model
of the crossing-recombination vortex line dynamics [33].

In conclusion, have shown the crucial role played by
the trap geometry in the formation of a vortex line after
a phase imprint. In particular we identified a few possible
scenarios for the short term evolution of the phase imprint
in the experiments [2, 3], showing that the details are
highly sensitive to geometric factors. To precisely charac-
terize the behavior realized in the experiments [2, 3], the
experiment will likely need to be simulated with precise
values of the trapping asymmetries known, and with re-
alistic particle numbers which are currently are beyond
the capabilities of the most advanced implementations
of the SLDA approach. Satisfactory agreement with the
latest MIT experiments serves as the next step in validat-
ing the time-dependent SLDA, demonstrating that it is
capable of qualitatively describing the complex dynam-
ics of strongly interacting fermionic systems. We have
demonstrated that recombination is likely present in the
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FIG. 5. (Color online, click on frames to view movie online.)
Generation of quantum turbulence by phase imprint of the
vortex lattice. In the left column consecutive frames show:
a) vortex lattice with knife edge dividing cloud, b) just after
phase imprint removal of the knife, c-e) decay of turbulent
motion. In the right column we show the corresponding PDFs
for longitudinal v

||

and transverse v
?

components of collective
velocity. Dotted lines show the gaussian best fit to the data.

early stages of the experiments [2, 3] (see Figs. 2 and 3)
and can be selected for by reducing the anharmonicity of
the trap. We have also presented that the phase imprint
technique can be utilized to generate quantum turbulent
state. Therefore, using improved imaging techniques [3]
coupled with carefully designed initial conditions, cold
atom experiments have a great opportunity to directly
probe and quantify the dynamics and interactions vortices
and the potential to significantly advance our understand-
ing of quantum turbulence. In this regard, the unitary
Fermi gas is of particular interest as the results will have

Wlazłowski, Bulgac, Forbes, and Roche [arXiv:1404.1038]

Quantum Turbulence
with Fermions
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Solitons?
Vortices!
•Mit sees vortices

Long periods
Dependence on aspect 
ratio and interaction
Imaging limitations

•Validates dfts
Nuclear dynamics
Neutron stars

•New arena to study 
Quantum Turbulence

Feshbach resonance, in the unitarity limit where the scattering length
diverges, a substantial part of this filling is due to so-called Andreev
bound states, localized fermionic states bound to the soliton, also
known to reside inside vortex cores2. Here, the gas density in the vici-
nity of the soliton is predicted to be suppressed by 80% of the bulk
density, as opposed to 100% for solitons in BECs.

In the BCS limit of weak attractive interactions, the BdG equations
reduce to the Andreev equation, a Dirac equation where the pairing
gap D(z) plays the role of a spatially varying mass coupling particles
and holes3 (see Supplementary Information). The same equation des-
cribes solitons in conducting polymers5. The solution for the pairing
gap is known5 to be D(z) 5 D0 tanh(z/jBCS), as in the BEC limit, that
is, it is again represented by Fig. 1a but with j 5 jBCS, the BCS cohe-
rence length. The density profile of the localized state in Fig. 1a here
represents the fermionic Andreev bound state, as opposed to the den-
sity of uncondensed bosons in the BEC regime. Solitons in the BCS
regime are expected to be essentially completely filled in. Indeed, in this
limit of long-range overlapping Cooper pairs, only a minute fraction
of particles near the Fermi surface takes part in pairing, and the reduc-
tion of the pairing gap at the soliton affects the density only very weakly.

Creating solitons in a fermionic superfluid
The creation of solitons in a strongly interacting fermionic superfluid
poses several challenges. First, a superfluid with a soliton is not in its

ground state, so the temperature of the gas has to be low enough for
the soliton not to decay rapidly into thermal excitations. Such dissipa-
tion can proceed through collisions of the soliton with sound waves,
leading to its acceleration. When the soliton reaches a critical velocity,
it is expected to decay into phonons or, in the case of fermionic super-
fluids, pair excitations27,28,30. Second, solitons can generally decay into
vortices via the so-called snake instability13,15,31,32. In the case of weakly
interacting BECs in elongated traps, stability requires the chemical
potential m of the condensate to be not much larger than the transverse
confinement energy31. For a Fermi gas, this would require a quasi-one-
dimensional geometry where the transverse cloud width is one inter-
particle spacing. As we show below, this is not necessary. Last, for strongly
interacting superfluids, it is a priori not obvious that solitons are stable
against quantum fluctuations10,21–25,33.

Here we create and observe long-lived solitons in a strongly inter-
acting fermionic superfluid of 6Li atoms near a Feshbach resonance.
Solitons are created via phase imprinting (see Fig. 1b), a technique
successfully employed for weakly interacting Bose condensates11,12,14.
The superfluid containing typically ,2 3 105 atom pairs is prepared
in an elongated trap with cylindrical symmetry (axial and radial trap-
ping period respectively Tz 5 45–210 ms and TH 5 14 ms) and tun-
able aspect ratio l 5 Tz/TH (ref. 7). A green laser beam far detuned
from the atomic resonance is masked to shine on one half of the
superfluid. In a time t, the applied potential U, as experienced by a
single fermion, advances the phase of the superfluid order parameter
in the exposed region by Dw 5 2Ut/B relative to the unexposed region.
The time t < 35 ms is experimentally adjusted in order to create one
high-contrast soliton.

In the strongly interacting regime, the soliton does not cause a den-
sity depletion within our resolution. However, it is tied to a phase twist
in the pair wavefunction. As in the case of vortices34, the pair wave-
function can be directly observed via a rapid ramp to the BEC side of
the Feshbach resonance. The ramp converts large fermion pairs into
tightly bound molecules, empties out the soliton cores and increases
the soliton width to the final healing length !1

! ffiffiffiffiffiffiffiffiffiffi
nMaf
p

, where af is
the scattering length at the final magnetic field and nM the density of
molecules. The rapid ramp followed by time-of-flight expansion thus
enhances the soliton contrast and acts as a magnifying glass (for details,
see Supplementary Information).

Figure 1c and d report the observation of solitons in a fermionic
superfluid prepared at 815 G (close to the 832 G Feshbach resonance)
for various hold times following the phase imprint. Here, the inter-
action parameter at the cloud centre is 1/kFa 5 0.30(2), where a is the
scattering length and kF 5 (3p2n)1/3 is the Fermi wavevector, related
to the total central fermion density n and the Fermi energy EF~
h!2k2

F

!
2m. Figure 1c shows the optical density in absorption images

taken after time of flight and the rapid ramp to ,580 G, while Fig. 1d
displays residuals obtained by subtracting a smoothed copy of the
same absorption image. The optical density contrast of solitons is
about 10% (see Supplementary Information). A sequence of radially
integrated residuals as a function of time is displayed in Fig. 1e, dem-
onstrating the soliton to be stable for more than 4 s or 100,000 times
the microscopic timescale B/EF, the Fermi time. This establishes that
solitons in fermionic superfluids can exist as stable and long-lived
excitations that do not decay despite strong quantum fluctuations.

Soliton oscillations
The solitons are observed to undergo oscillations in the harmonically
trapped superfluid, demonstrating their emergent particle nature. The
motion is to a high degree deterministic, as soliton positions for different
realizations of the experiment at varying wait times lie on the same
classical sinusoidal trajectory. The force on the soliton is provided by
the trapping force experienced by the atoms missing in the soliton,
Nsmv2

z z:Mv2
z z, where vz 5 2p/Tz, jNsj is the number of missing

atoms, and M 5 Nsm , 0 the bare mass of the soliton. M is negative
as the soliton is a density depletion. Introducing the effective, or
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Figure 1 | Creation and observation of solitons in a fermionic superfluid.
a, Superfluid pairing gap D(z) for a stationary soliton, normalized by the bulk
pairing gap D0, and density n(z) of the localized bosonic (fermionic) state versus
position z, in the BEC (BCS) regime of the crossover, in units of the BEC healing
length (BCS coherence length) j. b, Diagram of the experiment. A phase-
imprinting laser beam twists the phase of one-half of the trapped superfluid by
approximately p. The soliton generally moves at non-zero velocity vsoliton.
c, Optical density and d, residuals (optical density minus a smoothed copy of the
same image) of atom clouds at 815 G, imaged via the rapid ramp method34,
showing solitons at various hold times after creation. One period of soliton
oscillation is shown. The in-trap aspect ratio was l 5 6.5(1). e, Radially integrated
residuals as a function of time revealing long-lived soliton oscillations. The soliton
period is Ts 5 12(2)Tz, much longer than the trapping period of Tz 5 93.76(5) ms,
revealing an extreme enhancement of the soliton’s relative effective mass, M*/M.
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Imaging Solitons

Figure S 1: Imaging solitons. a Optical density, b integrated 1D profiles and c corresponding residuals of a fermionic
superfluid, prepared at 832G, after expansion and rapid ramp to various final magnetic fields Bmin. Without any ramp,
the superfluid at 832G, observed after 9 ms time of flight, does not show a clear signature of the soliton. A 10 ms ramp
to the BEC-side before expansion at 760G reduces interactions but still only reveals a very faint trace of the soliton.
For Bmin < 700G the soliton is revealed. d Sequence of the magnetic field ramp, indicating time of flight (TOF),
final ramp field Bmin and the imaging pulse at 760G. e The maximum depletion detected in the optical density, in
units of the standard deviation σ found outside the soliton. The detection threshold of 2.5 σ is indicated.

Solitons gradually fill in as the interaction strength is tuned from the BEC-regime to the BCS-regime of the
crossover. Indeed, in the BCS regime only a minute fraction ∆0/EF of the gas is Cooper paired, and only this fraction
is missing at the soliton’s center, where the pair wavefunction ∆(z) is maximally depleted. The contrast in the particle
density thus vanishes. Indeed, absorption images of atom clouds at the Feshbach resonance, in-situ or after expansion
(Fig. S 1 a), do not show any observable (! 3%) contrast. Given our signal to noise (1 σ fluctuations corresponding to
a ∼ 3% density ripple) and finite resolution of 3µm, and assuming a soliton width as found from the BdG equation 1,
this gives a lower bound on the soliton filling of 91%. The BdG equations predict a filling of only 20%.

While the soliton is not visible in situ, the modulus of the pair wavefunction itself can be imaged by a rapid
ramp technique similar to what was used for the observation of vortex lattices in the BEC-BCS crossover 2, 3. A
magnetic field ramp to the weakly interacting BEC-regime turns large fermion pairs into molecules. An absorption
image of molecules thus approximately reflects the magnitude of the fermion pair wavefunction before the ramp. In
addition, the ramp reduces the interaction strength and thus increases the coherence (healing) length of the superfluid,

1

which increases the soliton contrast and increases their width.
The rapid ramp is illustrated in Fig. S 1. Starting for example with a superfluid at the Feshbach resonance,

the magnetic field is first quickly ramped over 10 ms to 760 G, on the BEC-side of the Feshbach resonance where
interactions are weaker and fermion pairs are more tightly bound. Next, the cloud is released from the trap. After
1 ms, the magnetic field is rapidly ramped over 1 ms to ∼ 580 G, where interactions are essentially absent and fermion
pairs have fully turned into tightly bound molecules. The molecular cloud further expands for 4 ms at 580G, after
which the magnetic field is re-ramped over 1 ms to 760G. After an additional 2 ms of expansion at 760 G, the
molecules are imaged via absorption imaging.

Solitons can be identified easily in the absorption images by eye. However, to automize soliton detection we
implemented the following method. For each absorption image, we first generate a residual profile by subtracting a
smoothened version of the optical density profile from the actual optical density profile. We determine the standard
deviation of fluctuations σ and identify a depletion in the residual profile as a soliton if its depth is greater than 2.5 σ.

We have found the rapid ramp technique necessary to reveal solitons in the strongly interacting regime, which
is another indication of their strong filling, next to their slow period and enhanced relative effective mass. To show the
importance of the rapid ramp, we have varied the final field of the rapid ramp Bmin between 500 and 832 G. The depth
of the maximum depletion, normalized by σ, is shown in Fig S 1. For ramp fields Bmin < 650G solitons are clearly
revealed.

Speed of sound measurement

The phase imprinting not only changes the
phase of the superfluid, but also perturbs the
density, creating a sound wave. Fig. S 2 shows
the evolution of the cloud profile during the
first 100 ms after a phase imprinting pulse at
the Feshbach resonance. A sound wave is seen
to propagate away from the potential barrier.
It disappears at the edge of the atom cloud,
after about 40 ms. Adjusting for the expan-
sion during time of flight, the speed of sound
is found to be 8.8 mm/s, agreeing with the
expectation for the zero-temperature speed of
sound c =

√
ξ/3 vF with ξ = 0.37, to within

2%. Note that the soliton sequences shown in
the main text start 400 ms after the phase im-
print, long after the initial sound wave has dis-
appeared.
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Figure S 2: Speed of
sound measurement.
a Integrated 1D density
profiles after rapid ramp
and time of flight, for the
first 100 ms after applying
the phase imprinting pulse
at the Feshbach resonance,
at 832G. A sound wave is
clearly observed. b same
as a), with a line marking
the sound wave.

Snake Instability
Planar solitons in three dimensions are not only thermodynamically unstable towards accelerating, but also dynam-
ically unstable towards shape excitations - the so-called “snake” instability 4–8. This excitation of the soliton plane
along the radial direction grows exponentially until the soliton decays into vortices. This is suppressed in elongated
trap geometries. In weakly interacting BECs, solitons are expected to become dynamically unstable when the chem-
ical potential µ of the condensate becomes larger than ≈ 2.4!ω⊥, where ω⊥ is the radial trapping frequency 4. The
solitons in our strongly interacting fermionic superfluid appear to be much more robust, as they are long-lived even
when the chemical potential µ ≈ 35!ω⊥. Still, we were able to observe the snake instability by reducing the trap
aspect ratio to about 3. Examples are shown in Fig. S 3 where the depletion revealed by the rapid ramp no longer
follows a straight line but rather a wavy trajectory, characteristic of the snake instability 6–8.
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Conclusion
• Cold Atoms

• Interaction understood and controllable
• Test many-body part of theory

Static and dynamical theories, quantitative tests on percent level

• Directly simulate physics of interest
Vortex dynamics, quantum turbulence, few-body interaction and resonance

• Quantum simulators?
Can we simulate gauge theories? (Try to simulate lattice models)
Boselet and Femilet models of nuclei?

• Realtime Dynamics
Powerful tool, scales well, probes interesting physics
Hydrodynamical models of nuclei? (DNP talk on Friday)
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Future Work?
• Finite T

• Polarized systems

• Large scale dynamics

• Applications

• Stochastic DFT

Saturday, November 1, 14


