APCNP, Hawaii, Oct.6, 2014

Ab-initio study of nuclear four-body reactions

Niigata University S. Aoyama

<u>Corrlated Gaussian + Microscopic R-matrix Method</u>

P. Descouvemont, D. Baye, Y. Suzuki, S. Aoyama, K. Arai, AIP ADVANCES, (2014)041011.
S. Aoyama, K. Arai, Y. Suzuki, P. Descouvemont, D. Baye, FBS52, (2012)97.
K. Arai, S. Aoyama, Y. Suzuki, P. Descouvemont, D. Baye, PRL107 (2011) 132502.

Dominant reactions in primordial nucleosynthesis

Normally, the primordial nucleosyntesis is explained by the reaction chain calculation which is based on a simple nuclear model or a mere extrapolation from experiments.

- 1: $n \leftrightarrow p$ 2: $p(n, \gamma)d$ 3: $d(p, \gamma)^3$ He 4: $d(d, n)^{3}$ He
- 5: $d(d, p)^{3}$ H
- 6: ${}^{3}\mathrm{H}(d,n){}^{4}\mathrm{He}$
- 7: ${}^{3}\mathrm{H}({}^{4}\mathrm{He},\gamma){}^{3}\mathrm{H}$
- 8: ${}^{3}\text{He}(n,p){}^{3}\text{H}$
- 9: ${}^{3}\text{He}(d, p){}^{4}\text{He}$
- 10: ${}^{3}\text{He}({}^{4}\text{He}, \gamma){}^{7}\text{Be}$
- 11: ${}^{7}\text{Li}(p, {}^{4}\text{He}){}^{4}\text{He}$
- 12: ${}^{7}\text{Be}(n,p){}^{7}\text{Li}$

 $d(d,\gamma)^4$ He

Can we understand these reactions in *ab-initio* way? Is there some effects of tensor interaction in Big-Bang?

Effect of tensor interaction in low energy region

Hamiltonian(4-body case)

$$H = \sum_{i=1}^{4} T_i - T_{cm} + \sum_{i < j}^{4} V_{ij} + \sum_{i < j < k}^{4} V_{ijk},$$

Realistic Interaction: AV8' (+Coulomb+3NF) V_{ij} : Central+LS+<u>Tensor</u>+Coulomb

Pudliner, Pandharipande, Carlson, Pieper, Wiringa: PRC56(1997)1720

V_{ijk} : Effective three nucleon force

Hiyama, Gibson, Kamimura, PRC 70(2003)031001

Effective Interaction: MN (+Coulomb)

 V_{ij} : Central+Coulomb

Thompson, LeMere, Tang, NPA(1977)286

Correlated Gaussian function with triple global vectors for four nucleon system $F_{L_1L_2(L_{12})L_3LM}(u_1, u_2, u_3, A, x)$ $= \exp\left(-\frac{1}{2}\widetilde{x}Ax\right) [[\mathcal{Y}_{L_1}(\widetilde{u_1}x)\mathcal{Y}_{L_2}(\widetilde{u_2}x)]_{L_{12}}\mathcal{Y}_{L_3}(\widetilde{u_3}x)]_{LM}$ Single gloval vector $\mathcal{Y}_{L_iM_i}(\widetilde{u_i}x) = |\widetilde{u_i}x|^{L_i}Y_{L_iM_i}(\widehat{u_i}x)$ For H-type, we can choose, $\widetilde{u_1} = (1,0,0), \ \widetilde{u_2} = (0,1,0)$ and $\widetilde{u_3} = (0,0,1)$

We also write the K-type basis function in the same form. H-type

$$\exp\left(-\frac{1}{2}\widetilde{x'}A_K x'\right) \left[\left[\mathcal{Y}_{L_1}(x_1')\mathcal{Y}_{L_2}(x_2') \right]_{L_{12}} \mathcal{Y}_{L_3}(x_3') \right]_{LM}$$

$$x' = U_{KH} x$$
 $\widetilde{u_1} = (1,0,0), \ \widetilde{u_2} = (0,-\frac{1}{2},1) \ \text{and} \ \widetilde{u_3} = (0,\frac{2}{3},\frac{2}{3})$

$$A = (u_1 u_2 u_3) A_K \left(\begin{array}{c} \widetilde{u_1} \\ \widetilde{u_2} \\ \widetilde{u_3} \end{array}\right) = \widetilde{U_{KH}} A_K U_{KH}$$

Microscopic R-matrix Method

a : channel raidus (13-15fm)

$$x_3 < a$$
 --- Gaussian expansion
 $x_3 > a$ --- $I_1(ka) \ \delta_{\alpha\alpha'} - S_{\alpha\alpha'} O_1(ka) \ or \ W_{l+1/2,\eta}(2ka)$

e.g. D. Baye, P. -H.Heenen, M. Libert-Heinemann, NPA291(1977).

Radiative capture

K. Arai, S. Aoyama, Y. Suzuki, P. Descouvemont and D. Baye, PRL107 (2011) 132502.

We can add a new evidence of D-wave components (tensor) of deutron and ⁴He.

Radiative capture

K. Arai, S. Aoyama, Y. Suzuki, P. Descouvemont and D. Baye, PRL107 (2011) 132502.

E1 transition

First term of E1 is an iso-vector operator

$$\mathcal{M}_{1\mu}^{E} = e \sum_{i_{1}}^{4} g_{l}^{(i)} r_{i} Y_{1\mu}(\hat{\boldsymbol{r}}_{i})$$
$$\approx e \sum_{i=1}^{4} t_{i3} \boldsymbol{r}_{i}$$
$$\propto \boldsymbol{R}_{c.m.}^{n} - \boldsymbol{R}_{c.m}^{p}$$

Second term of E1 is an iso-scalar

$$\mathcal{M}_{1\mu}^{E} \approx -e \sum_{i}^{A} t_{i3} r_{i} Y_{1\mu}(\hat{\boldsymbol{r}}_{i}) - e \frac{k^{2}}{60} \sum_{i}^{A} r_{i}^{3} Y_{1\mu}(\hat{\boldsymbol{r}}_{i})$$

D.Baye, PRC86(2012)039306

order is $1/30 \times (kr)^2 \times E1$

S. Aoyama, K. Arai, Y. Suzuki, P. Descouvemont, D. Baye, FBS52, (2012)97.

For effective interaction, d+d scattering picture is good!

R.-Matrix analyses : Hofmann, Hale, PRC77(2008)044002

Coupling between d+d channel and 3N+N channels

Tensor force makes the coupling in the scattering strong

S. Aoyama, K. Arai, Y. Suzuki, P. Descouvemont, D. Baye, FBS52, (2012)97.

Energy levels for negative parity states

Effective interaction (MN) gives same phase shift for 0-.1-.2- !

Included channels in the present calculation

model			channel
	2N+2N	Ι	$d(1^+)+d(1^+)$
			$d(1^+)+d^*(1^+)$
FULL			$d^{*}(1^{+})+d^{*}(1^{+})$
		II	$\bar{d}(0^+) + \bar{d}(0^+)$
			$\bar{d}(0^+) + d^*(0^+)$
			$d^{*}(0^{+}) + d^{*}(0^{+})$
		III	$d^{*}(2^{+})+d^{*}(1^{+})$
			$d^{*}(2^{+})+d^{*}(2^{+})$
		IV	$d^{*}(3^{+})+d^{*}(1^{+})$
			$d^{*}(3^{+})+d^{*}(2^{+})$
			$d^{*}(3^{+}) + d^{*}(3^{+})$
		V	$2n(0^+)+2p(0^+)$
			$2n(0^+)+2p^*(0^+)$
			$2n^{*}(0^{+})+2p(0^{+})$
			$2n^{*}(0^{+})+2p^{*}(0^{+})$
	3N+N	1	$t(\frac{1}{2}^+) + p(\frac{1}{2}^+)$
			$t^*(\frac{1}{2}^+) + p(\frac{1}{2}^+)$
		2	$h(\frac{1}{2}^+) + n(\frac{1}{2}^+)$
			$h^*(\frac{1}{2}^+) + n(\frac{1}{2}^+)$

Thanks to the reduction of basis function by SVM for the sub-system. We can reduce the dimension of matrix elements very much!

Dimensions of matrix elements for FULL in the LS-coupled case

N 0+ 6660 1+ 16680

$$2+22230$$

1- 11670

2 - 12480

()_

4200

The number of M.E. is N(N+1)/2.

For 2+, it takes about 200 days with 1CPU(1Core). And we need about 20Gbyte memory for the MRM calculation(half day).

All pseudo states (discretized continuum state) are employed in the MRM calculation.

Summary

1.For astrophysical S-factor in d(d, γ)⁴He, d(d, p)³H, d(d,n)³He reactions, tensor interaction is important to reproduce experiment.

2.In the d+d elastic reaction, the breaking of deuteron due to tensor interaction is large.

Next

5-nucleon systems