Systematic calculation of electric dipole responses

Advances and perspectives in computational nuclear physics Hilton Waikoloa Village, Hawaii, USA Oct. 5-7, 2014

INAKURA Tsunenori (Chiba U)

in collaboration with NAKATSUKASA Takashi (U Tsukuba/RIKEN) YABANA Kazuhiro (U Tsukuba) NAKADA Hitoshi (Chiba U) EBATA Shuichiro (Hokkaido U) Ground state is calculated systematically. But excited state is less known. Systematic calc. is now undertaking.

Electric dipole (E1) mode

• Giant Dipole Resonance is simplest collective vibration mode.

Excitation Energy

- Experimental data in stable region have been accumulated.
- Pygmy Dipole Resonance

Cross Section

 S_n

You cannot see the forest for the trees.

Nuclear landscape and theoretical model

- Ab-initio no-core shell model calculations : light nuclei.
- Configuration interaction (i.e. shell model) : reaches to medium mass.
- Coupled cluster : the vicinity of doubly magic nuclei.
- Density functional theory (**DFT**) : the whole nuclear chart except for light nuclei

Key ingredients

- Coordinate representation [for describing unstable nuclei having skin (or halo)]
- Continuum states [for describing excitation beyond particle threshold energy]
- **Deformation** [Nuclei are mostly deformed.]
- Pairing correlation [Superfluidity plays essential role for several modes.]

Key ingredients

- Coordinate representation [for describing unstable nuclei having skin (or halo)]
- Continuum states [for describing excitation beyond particle threshold energy]
- **Deformation** [Nuclei are mostly deformed.]
- Pairing correlation [Superfluidity plays essential role for several modes.]

3D lattice representation

- applicable to **deformed** nuclei
- good approximation for **continuum state**

NO pairing correlation which has minor impact on E1 mode.

Response External field

 $\bullet m$

O i

$$\begin{cases} \begin{bmatrix} A & B \\ B^* & A^* \end{bmatrix} - \begin{bmatrix} \hbar \omega & 0 \\ 0 & -\hbar \omega^* \end{bmatrix} \end{cases} \begin{bmatrix} X \\ Y \end{bmatrix} = -\begin{bmatrix} V_{\text{ext}} \\ V_{\text{ext}}^{\dagger} \end{bmatrix} \quad |\text{vib.}\rangle = \sum_{mi} f_{mi} |\text{1p-1h}\rangle$$

$$A_{(ph),(p'h')} = (\varepsilon_p - \varepsilon_h) \,\delta_{pp'} \delta_{hh'} + \frac{\delta h_{(ph)}}{\delta \rho_{(p'h')}} \Big|_{\rho = \rho_0}$$

$$B_{(ph),(p'h')} = \frac{\delta h_{(ph)}}{\delta \rho_{(h'p')}} \Big|_{\rho = \rho_0}$$
The collective motion is induced by the motion of the potential.

- Taking **3D** coordinate representation makes A, B matrices enormous.
- Dimension of matrices A, B is # of <u>particle-hole combination</u> (*mi*), ~ $O(10^{6-7})$.
- The matrix elements change in solving iteratively.

Response External field

 $\bullet m$

$$\begin{cases} \begin{bmatrix} A & B \\ B^* & A^* \end{bmatrix} - \begin{bmatrix} \hbar \omega & 0 \\ 0 & -\hbar \omega^* \end{bmatrix} \end{cases} \begin{bmatrix} X \\ Y \end{bmatrix} = - \begin{bmatrix} V_{\text{ext}} \\ V_{\text{ext}}^{\dagger} \end{bmatrix} \quad |\text{vib.}\rangle = \sum_{mi} f_{mi} |\text{1p-1h}\rangle$$

$$A_{(ph),(p'h')} = (\varepsilon_p - \varepsilon_h) \,\delta_{pp'} \delta_{hh'} + \frac{\delta h_{(ph)}}{\delta \rho_{(p'h')}} \Big|_{\rho = \rho_0}$$

$$B_{(ph),(p'h')} = \frac{\delta h_{(ph)}}{\delta \rho_{(h'p')}} \Big|_{\rho = \rho_0}$$
The collective motion is induced by the motion of the potential.

- Taking **3D** coordinate representation makes A, B matrices enormous.
- Dimension of matrices A, B is # of <u>particle-hole combination</u> (*mi*), ~ $O(10^{6-7})$.
- The matrix elements change in solving iteratively.

We avoid explicit calculation of induced field $\delta h/\delta \rho$ by use of Finite Amplitude Method and Krylov subspace method.

Krylov subspace method

Iterative method for solving linear matrix equation, Ax=b. In nth step, x is optimized in the subspace spanned by

$$K_n(A,b) = \operatorname{span}\{b, Ab, A^2b, \cdots, A^{n-1}b\}$$

The well-known solvers are the Conjugate Gradient (CG), Lanczos, Arnoldi. But, nobody knows **which solver works well**.

Krylov subspace method

Iterative method for solving linear matrix equation, Ax=b. In nth step, x is optimized in the subspace spanned by

$$K_n(A,b) = \operatorname{span}\{b, Ab, A^2b, \cdots, A^{n-1}b\}$$

The well-known solvers are the Conjugate Gradient (CG), Lanczos, Arnoldi. But, nobody knows **which solver works well**.

Krylov subspace method for Ax = b optimizes the solution x in subspace $K_n(A,b) = \text{span}\{b, Ab, A^2b, \dots, A^{n-1}b\}$, therefore A itself is not required.

 $\Rightarrow \text{ If we can appropriately estimate } \delta h_{(ph)} = \sum_{(p'h')} \left| \frac{\partial h_{(ph)}}{\partial \rho_{(p'h')}} \right|_{\rho_0} \delta \rho_{(p'h')},$

we do not have to calculate the induced filed $\frac{\partial h_{(ph)}}{\partial \rho_{(p'h')}}$.

Linear-Response (RPA) equation

$$\begin{cases} \begin{bmatrix} A & B \\ B^* & A^* \end{bmatrix} - \begin{bmatrix} \hbar \omega & 0 \\ 0 & -\hbar \omega^* \end{bmatrix} \end{cases} \begin{bmatrix} X \\ Y \end{bmatrix} = - \begin{bmatrix} V_{\text{ext}} \\ V_{\text{ext}}^{\dagger} \end{bmatrix}$$
$$A_{(ph),(p'h')} = (\varepsilon_p - \varepsilon_h) \,\delta_{pp'} \delta_{hh'} + \frac{\delta h_{(ph)}}{\delta \rho_{(p'h')}} \bigg|_{\rho = \rho_0}$$
$$B_{(ph),(p'h')} = \frac{\delta h_{(ph)}}{\delta \rho_{(h'p')}} \bigg|_{\rho = \rho_0}$$

Krylov subspace method for Ax = b optimizes the solution x in subspace $K_n(A,b) = \text{span}\{b, Ab, A^2b, \dots, A^{n-1}b\}$, therefore A itself is not required.

 $\Rightarrow \text{ If we can appropriately estimate } \delta h_{(ph)} = \sum_{(p'h')} \left. \frac{\partial h_{(ph)}}{\partial \rho_{(p'h')}} \right|_{\rho_0} \delta \rho_{(p'h')},$ we do not have to calculate the induced filed $\frac{\partial h_{(ph)}}{\partial \rho_{(p'h')}}.$

Finite Amplitude Method (FAM)

Nakatsukasa, TI, Yabana, PRC76, 024318

 δh can be estimated by the finite difference method: $\delta h |\phi_i\rangle = \frac{1}{\eta} \left(h \left[\langle \psi' |, |\psi \rangle \right] - h_0 \right) |\phi_i\rangle$ $|\psi_i\rangle = |\phi_i\rangle + \eta |X_i\rangle, \quad \langle \psi'_i| = \langle \phi_i| + \eta \langle Y_i|$

FAM reduces calculation costs : $O(N^2) \Rightarrow O(N)$

Programming of the RPA code becomes trivial, because we only need calculation of the single-particle potential, with **different bras and kets**.

Numerical Detail

$$\left\{ \left[egin{array}{cc} A & B \ B^* & A^* \end{array}
ight] - \left[egin{array}{cc} \hbar \omega & 0 \ 0 & -\hbar \omega^* \end{array}
ight]
ight\} \left[egin{array}{cc} X \ Y \end{array}
ight] = - \left[egin{array}{cc} V_{
m ex} \ V_{
m ex} \ V_{
m ex} \end{array}
ight]$$

- Energy Density Functional: SkM* (Skyrme-EDF)
- Fully self-consistent calculation.
- No pairing correlation.
- **3D lattice** without any spatial symmetry.
- $R_{box} = 15 \text{ fm}.$
- Complex excitation energy with $\Gamma = 1.0 \,\text{MeV}$.
- $\Delta E = 0.30 \text{ MeV}$

up to 38.1 MeV (128 points)

• Energy-paralleled calc.

adaptive coordinate PRC71, 024301

Electric Dipole strength distributions

Inkaura+, PRC84, 021302

GDR: comparison with experiment

GDR splitting by deformation

- New collective mode unique in n-rich nuclei such as oscillation between skin and core?
- What is emergence condition?
- Alternative observation of neutron skin thickness and/or neutron matter EoS?

Rossi+, PRL 111, 242503

Magic numbers for PDR emergence

Magic numbers for PDR

Canonical-basis TDHFB Ebata, Nakatsukasa, TI, PRC90, 024303

Universal correlation with skin thickness

- PDR fraction skin thickness shows a universal rate ~ 0.2 fm^{-1} .
- PDR could be an alternative observation of skin thickness.

Inakura+, PRC84, 021302

PDR constraints neutron matter EoS.

PDR may have some information on neutron matter equation of state.

- Dipole polarizability $\alpha_D \propto \int dE \frac{S(E1; E)}{E}$ is promising for constraint on NM EoS.
- Well-developed PDR in spherical n-rich nuclei is better.

<u>Summary</u>

We performed systematic calculation of E1 responses using DFT and studied properties of PDR.

- There are magic numbers for PDR emergence and development.
- PDR could be an alternative observation of skin thickness.
- PDR could constraint on neutron matter equation of state.

Perspective

Pairing correlation : RPA \Rightarrow quasi-particle RPA (QPRA)Dimension of matrix becomes huge.RPA : particle # x coordinate # ~ O(10^{6-7})QRPA : coordinate # x coordinate # ~ O(10^{8-9})

 \Rightarrow systematic calculation of quadrupole (E2) responses