### Computing Nuclear Matrix Elements for $\beta\beta$ Decay

#### J. Engel

University of North Carolina

October 7, 2014





### Neutrinolesss Double-Beta Decay

If energetics are right (ordinary beta decay forbidden)...

and neutrinos are their own antiparticles...

can observe two neutrons turning into protons, emitting two electrons and nothing else.



### Why Double-Beta Decay Is Important

besides the ability to determine whether  $\nu = \bar{\nu}$ 





In usual scenario, rate depends on square of "effective neutrino mass"  $m_{\text{eff}} \equiv \sum_{i} m_i U_{ei}^2$ If lightest neutrino is light:

$$\begin{array}{ll} \bullet & m_{\rm eff} \propto \sqrt{\Delta m_{\rm sol}^2} & {\rm normal} \\ \bullet & m_{\rm eff} \propto \sqrt{\Delta m_{\rm atm}^2} & {\rm inverted} \end{array}$$

### Why Double-Beta Decay Is Important

besides the ability to determine whether  $\nu = \bar{\nu}$ 





In usual scenario, rate depends on square of "effective neutrino mass"

$$m_{\rm eff} \equiv \sum m_i U_{ei}^2$$

If lightest neutrino is light:

$$\begin{array}{ll} \bullet & m_{\rm eff} \propto \sqrt{\Delta m_{\rm sol}^2} & {\rm normal} \\ \bullet & m_{\rm eff} \propto \sqrt{\Delta m_{\rm atm}^2} & {\rm inverted} \end{array}$$





### Light-*v*-Exchange Matrix Element

Lowest-order expressions

$$M_{0\nu} = M_{0\nu}^{GT} - \frac{g_V^2}{g_A^2} M_{0\nu}^F + \dots$$

#### with

$$M_{0\nu}^{GT} = \langle F \mid \sum_{i,j} H(r_{ij}, \overline{E}) \vec{\sigma}_i \cdot \vec{\sigma}_j \tau_i^+ \tau_j^+ \mid I \rangle + \dots$$
$$M_{0\nu}^F = \langle F \mid \sum_{i,j} H(r_{ij}, \overline{E}) \tau_i^+ \tau_j^+ \mid I \rangle + \dots$$

$$H(r,\overline{E}) \approx \frac{R}{r}$$

Corrections are from "forbidden" terms, weak nucleon form factors, 2-body currents (which give 3- and 4-body  $\beta\beta$  operators) ...

#### Recent Level of Agreement proton-neutron (pn) QRPA Shell Model From P. Vogel, 2010 Interacting Boson Model Projected HFB 7 ▼ **Generator Coordinates** 6 Same level of 5 گ<sup>4</sup> agreement in 2014. 3 Not so great. 2

<sup>82</sup>Se

<sup>96</sup>Zr

<sup>76</sup>Ge

<sup>100</sup>Mo

<sup>130</sup>Te

<sup>136</sup>Xe

 $\overline{^{150}}$ Nd



Major recent progress in nuclear-structure theory from increased computing power and new many-body methods.

We are in the process of improving all the models above, connecting them to *ab initio* work or including more correlations. Focus here on shell model, QRPA, and GCM.



Major recent progress in nuclear-structure theory from increased computing power and new many-body methods.

We are in the process of improving all the models above, connecting them to *ab initio* work or including more correlations. Focus here on shell model, QRPA, and GCM.

# "Ab Initio" Shell Model

Partition of Full Hilbert Space



P = valence space Q = the rest

<u>Task:</u> Find unitary transformation to make H block-diagonal in Pand Q, with  $H_{\text{eff}}$  in P reproducing d most important eigenvalues.

Shell model done here

# "Ab Initio" Shell Model

Partition of Full Hilbert Space



P = valence space Q = the rest

<u>Task:</u> Find unitary transformation to make H block-diagonal in Pand Q, with  $H_{\text{eff}}$  in P reproducing d most important eigenvalues.

Shell model done here

# "Ab Initio" Shell Model

Partition of Full Hilbert Space



P = valence space Q = the rest

Task: Find unitary transformation to make H block-diagonal in Pand Q, with  $H_{\rm eff}$  in P reproducing d most important eigenvalues.

For transition operator  $\hat{M}$ , must apply same transformation to get  $M_{\rm eff}$ .

# Some Options for Ab Initio Part

### Coupled Clusters:

In closed shells

$$|GS\rangle = \exp\left(t_i^a a_a^{\dagger} a_i + t_{ij}^{ab} a_a^{\dagger} a_b^{\dagger} a_i a_j + \ldots\right) |HF\rangle$$
$$a, b > F, \quad i, j < F$$

Excited states or states in nearby nuclei are excitations of  $|GS\rangle$ .

## Some Options for Ab Initio Part

Coupled Clusters:

In closed shells

$$|GS\rangle = \exp\left(t_i^a a_a^{\dagger} a_i + t_{ij}^{ab} a_a^{\dagger} a_b^{\dagger} a_i a_j + \ldots\right) |HF\rangle$$
$$a, b > F, \quad i, j < F$$

Excited states or states in nearby nuclei are excitations of  $|GS\rangle$ .

In-Medium Similarity Renormalization Group: Differential flow equation

$$\frac{dH(s)}{ds} = \left[\eta(s), H(s)\right],\tag{1}$$

with  $\eta$  chosen to asymptotically decouple shell-model space from other states. Normal-ordered 1- and 2-body operators kept at each step. Can also obtain decay operator.

# Some Options for Ab Initio Part

Coupled Clusters:

In closed shells

$$|GS\rangle = \exp\left(t_i^a a_a^{\dagger} a_i + t_{ij}^{ab} a_a^{\dagger} a_b^{\dagger} a_i a_j + \ldots\right) |HF\rangle$$
$$a, b > F, \quad i, j < F$$

Excited states or states in nearby nuclei are excitations of  $|GS\rangle$ .

In-Medium Similarity Renormalization Group: Differential flow equation

$$\frac{dH(s)}{ds} = \left[\eta(s), H(s)\right],\tag{1}$$

with  $\eta$  chosen to asymptotically decouple shell-model space from other states. Normal-ordered 1- and 2-body operators kept at each step. Can also obtain decay operator.

- No-Core Shell Model: See Pieter Maris talk.
- Auxiliary Diffusion Monte Carlo: See Stefano Gandolfi talk.

# Coupled-Clusers (CC) Procedure

- Find good NN and NNN interactions, 1- and 2-body currents by matching EFT to data in NN scattering, He, triton decay,... √
- 2. Obtain ground state for closed-shell nucleus  $^{56}\rm{Ni}$  (28 protons, 28 neutrons).  $\checkmark$
- 3. Use Equation-of-Motion (EOM) CC to obtain low-lying states in nuclei with A = 57 and 58, eventually 59.
- 4. Do Lee-Suzuki mapping of low-lying eigenstates with A = 57,58 onto  $f_{5/2}p_{3/2}p_{1/3}g_{9/2}$  shell, determine shell-model Hamiltonian that reproduces energies.  $\checkmark$
- 5. Do the same thing for the double-beta-decay operator, with 2-body current treated in normal-ordered 1-body approximation, at least initially.
- 6. Put more nucleons in the valence shell (20 for  $^{76}$ Ge), shut up, and calculate (in the words, allegedly, of Feynman).  $\checkmark$

### Coupled Cluster Computing

About 50K core hours in 15 shells for  $^{18}$ O.

### Scaling: EOM 2-particle attached: $N_p^5 N_h$ EOM 3-particle attached: $N_p^6 N_h$

TABLE III. Size of the many-body space in the diagonalization procedure in the Arnoldi algorithm for all states calculated in this work. All numbers are based on the angular-momentum-coupled representation (*jj* scheme).

| State                            | $N_{\rm max} = 10$ | $N_{\rm max} = 12$ | $N_{\rm max} = 14$ | $N_{\rm max} = 16$ | $N_{\rm max} = 18$ | $N_{\rm max} = 20$ |
|----------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| <sup>6</sup> He(0 <sup>+</sup> ) | 516 048            | 1 323 972          | 2 981 930          | 6 088 376          | 11 513 088         | 20 176 104         |
| <sup>6</sup> He(1 <sup>-</sup> ) | 1 507 930          | 3 894 028          | 8 808 688          | 18 040 354         | 34 190 482         | 60 011 982         |
| <sup>6</sup> He(2 <sup>+</sup> ) | 2 391 692          | 6 251 128          | 14 255 896         | 29 364 090         | 55 885 624         | 98 356 664         |
| 6Li(0+)                          | 775 992            | 1 989 508          | 4 478 936          | 9142216            | 17 284 308         | 30 285 212         |
| <sup>6</sup> Li(1 <sup>+</sup> ) | 2 268 746          | 5 853 534          | 13 234 004         | 27 093 632         | 51 335 514         | 90 080 136         |
| <sup>6</sup> Li(2 <sup>+</sup> ) | 3 595 384          | 9 391 650          | 21 409 878         | 44 088 456         | 83 893 672         | 147 629 532        |
| 6Li(3+)                          | 4 676 372          | 12 438 258         | 28 699 916         | 59 604 726         | 114 125 048        | 201 657 602        |
| <sup>18</sup> O(0 <sup>+</sup> ) | 1 908 474          | 5 022 710          | 11 485 808         | 23 680 034         | 45 071 990         | 79 331 610         |
| 18O(1-)                          | 5 594 899          | 14 802 528         | 33 974 801         | 70 231 288         | 133 940 727        | 236 049 974        |
| 18O(2+)                          | 8 891 923          | 23 794 936         | 55 036 119         | 114 391 274        | 219 038 683        | 387 077 788        |
| 18O(2-)                          | 8 897 760          | 23 803 219         | 55 047 530         | 114 406 595        | 219 058 796        | 387 083 193        |
| <sup>18</sup> O(3 <sup>+</sup> ) | 11 613 562         | 31 596 862         | 73 906 056         | 154 840 950        | 298 237 942        | 529 098 382        |
| <sup>18</sup> O(3 <sup>-</sup> ) | 11 621 868         | 31 608 838         | 73 922 708         | 154 863 424        | 298 267 524        | 529 107 862        |
| <sup>18</sup> O(4 <sup>+</sup> ) | 13 629 562         | 37 905 214         | 89 982 332         | 190 504 054        | 369 757 342        | 659 327 780        |
| 18F(0+)                          | 2 868 568          | 7 545 420          | 17 248 686         | 35 552 756         | 67 658 660         | 119 071 548        |
| $^{18}F(1^+)$                    | 8 403 602          | 22 228 738         | 51 009 366         | 105 427 688        | 201 040 066        | 354 285 892        |
| 18F(2+)                          | 13 362 878         | 35742012           | 82 642 970         | 171734254          | 328 788 766        | 580 957 010        |
| 18F(3+)                          | 17 451 568         | 47 458 334         | 110973350          | 232 452 890        | 447 659 068        | 794 095 862        |
| 18F(4+)                          | 20 479 376         | 56930198           | 135 106 850        | 285 982 274        | 554 996 372        | 989 530 134        |
| <sup>18</sup> F(5 <sup>+</sup> ) | 22 363 324         | 63 896 228         | 154 444 460        | 331 158 558        | 648 765 300        | 1163 943 530       |

# Coupled Clusters in sd Shell: Oxygen

G. Jansen, G. Hagen, A. Signoracci, JE



# **IMSRG**

from Heiko Hergert

- Published results, which are similar to those from coupled clusters in oxygen, took only 200-500 hours per isotope.
   50K total hours needed to produce oxygen isotopes, vs 500K coupled-cluster hours.
- ▶ <sup>76</sup>Ge in the  $f_{5/2}p_{1/2}p_{3/2}g_{9/2}$  space would increase time by a factor of 5 to 10<sup>1</sup>.

Overall cost would be be less than that of the subsequent shell-model calculations for  $^{76}{\rm Ge}.$ 

- ▶ 3-body induced operators not possible in the near future. Need for data sharing makes parallelization with MPI difficult.
- New methods (the "Magnus expansion") may enable perturbative evolution of 3-body operators, however. The group is hopeful.

<sup>&</sup>lt;sup>1</sup>A caveat: there are issues with extended valence spaces that could increase the time to convergence or stall the calculation entirely.

# Shell Model Diagonalization (Lanczos)

from Mihai Horoi

| Model Space                                                                                                                                                   | Dimension                                                                                                    | Comments                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| No Core in 6 major shells, $N_{\max}=2$                                                                                                                       |                                                                                                              |                                                                                                                 |
| <sup>48</sup> Ca                                                                                                                                              | $3.0 	imes 10^9$                                                                                             | doable with 3-body                                                                                              |
| $f_{7/2}, f_{5/2}, p_{3/2}$ $p_{1/2}, g_{9/2}, g_{7/2}$ $^{76}Ge n=1^{2}$ $^{76}Ge n=2$ $^{82}Se n=1$ $^{82}Se n=2$                                           | $\begin{array}{c} 2.5\times 10^{10} \\ 4.3\times 10^{11} \\ 3.0\times 10^9 \\ 6.4\times 10^{10} \end{array}$ | may be doable with 3-body<br>next gen., 2-body and 3-body<br>doable with 3-body<br>next gen., 2-body and 3-body |
| $g_{9/2}, g_{7/2}, d_{3/2}$ $d_{1/2}, s_{1/2}, h_{11/2}, h_{9/2}$ <sup>136</sup> Xe n=1 <sup>3</sup> <sup>136</sup> Xe n=2 <sup>130</sup> Te n=1 <sup>2</sup> | $\frac{1.6 \times 10^9}{8.6 \times 10^{10}}$<br>7.6 × 10^{10}                                                | done with 2-body, 3-body doable<br>next gen., 2-body and 3-body<br>next gen., 2-body and 3-body                 |

 $^2$ n is the number of particles excited from  $f_{7/2}$  and to  $g_{7/2}$ 

 $^{3}$ n is the number of particles excited from  $g_{9/2}$  and to  $h_{9/2}$ 

# AFDMC (Not Via Shell Model)

Aiming initially at calculation of decay of <sup>48</sup>Ca

Now can include 3-body (Urbana UIX and similar) forces almost exactly, implementing chiral Hamiltonians up to N2LO. Any other operator, including 2-body currents, should incur just a small extra cost.

Very conservative estimate for the ground state calculation of <sup>48</sup>Ca: 100,000–150,000 core hours. Includes optimization of initial variational wave-function and then projection in imaginary time.

Larger nuclei and mid-shell nuclei still a complete unknown.

# Heavy Deformed Nuclei: Large-Scale QRPA

pn-QRPA inserts complete set of states in intermediate nucleus, provides single-beta matrix elements from ground states of initial and final nuclei to this complete set.

Used modern Skyrme functional with tranditional matrix methods, consumed  $\approx 7M$  CPU hours.

# Heavy Deformed Nuclei: Large-Scale QRPA

pn-QRPA inserts complete set of states in intermediate nucleus, provides single-beta matrix elements from ground states of initial and final nuclei to this complete set.

Used modern Skyrme functional with tranditional matrix methods, consumed  $\approx 7M$  CPU hours.

#### Worth noting:

QRPA gives two sets of intermediate-nucleus energies and strengths (for transitions involving initial/final nuclei) but not corresponding wave functions. Doesn't tell you how the two sets of states are related.



J. Terasaki tryng to avoid probelm by replacing boson vaccuum with quasiparticle coupled-cluster state

$$|``QRPA"\rangle \propto \exp([YX^{-1}]^*_{abcd}b^{\dagger}_{ab}b^{\dagger}_{cd}) |0\rangle$$
$$\implies \mathcal{N}\exp\left([YX^{-1}]^*_{abcd}\alpha^{\dagger}_{a}\alpha^{\dagger}_{b}\alpha^{\dagger}_{c}\alpha^{\dagger}_{d}\right) |HFB\rangle$$

### Results



### Results





Results different from other QRPAs in some nuclei, but this actually points to problems with method, which is based on small-ampitude excitations of a single mean field.

## Results





Results different from other QRPAs in some nuclei, but this actually points to problems with method, which is based on small-ampitude excitations of a single mean field.

# QRPA Also Challenged by Proton-Neutron Pairing



Simplified interaction in two major shells

Amplitude blows up when mean field state on which it's based changes from normal like-particle pair condensate to proton-neutron pair condensate.

### A Better Approach: Generator Coordinates?

Generator Coordinate Method is perhaps best approach if nuclei don't have definite shape, can't be approximated by single mean field.

Construct set of mean fields by constraining coordinate(s), e.g. quadrupole moment  $\langle Q_0 \rangle$ . Then diagonalize H in space of symmetry-restored quasiparticle vacua with different  $\langle Q_0 \rangle$ .



#### Collective wave functions

### A Better Approach: Generator Coordinates?

Generator Coordinate Method is perhaps best approach if nuclei don't have definite shape, can't be approximated by single mean field.

Construct set of mean fields by constraining coordinate(s), e.g. quadrupole moment  $\langle Q_0 \rangle$ . Then diagonalize H in space of symmetry-restored quasiparticle vacua with different  $\langle Q_0 \rangle$ .



#### Collective wave functions

But other important non-shape degrees of freedom still missing.

# Adding Proton-Neutron Correlations to GCM

GCM missing physics that affects pn-QRPA calculations.

So we generalize GCM in a way that avoids wild QRPA behavior:

# Adding Proton-Neutron Correlations to GCM

GCM missing physics that affects pn-QRPA calculations.

So we generalize GCM in a way that avoids wild QRPA behavior:

1. pp and nn pairing currently treated in mean-field theory, but not pn pairing. So use quasiparticles that mix not only particles and holes, but also protons and neutrons.

# Adding Proton-Neutron Correlations to GCM

GCM missing physics that affects pn-QRPA calculations.

So we generalize GCM in a way that avoids wild QRPA behavior:

- 1. pp and nn pairing currently treated in mean-field theory, but not pn pairing. So use quasiparticles that mix not only particles and holes, but also protons and neutrons.
- 2. Constrain pn pairing as well as deformation, i.e. minimize

$$\begin{aligned} H' &= H - \lambda_Q \left\langle Q_0 \right\rangle - \lambda_P \left\langle P_0^{\dagger} \right\rangle \\ \text{with} \\ P_0^{\dagger} &= \sum_l \left[ a_l^{\dagger} a_l^{\dagger} \right]_{M_S = 0}^{L = 0, S = 1, T = 0} \end{aligned}$$

The pn operators have zero expectation value at HFB minimum, but we add HFB states constrained to have non-zero values.

# Results for <sup>76</sup>Ge

N. Hinohara and JE

Can build pn correlations into mean field. Frozen out in mean field minimum, but included dynamically in GCM.

Work with several-term separable interaction in two shells.



Proton-neutron pairing significantly reduces matrix element.

# More Results in $^{76}\mbox{Ge}$



#### No deformation coordinate

(Realistic value of  $g_{pn}$  about 1.5 — 1.6.)

Two-dimensional calculation with both pn pairing amplitude and deformation as coordinates



2-d collective wave funcions

Matrx element about the same with and without deformation coordinate.

Next steps: combine with DFT or *ab initio* interaction, include other collective and non-collective degrees of freedom (jacking up computing needs).

# GCM Computing

Most time in calculation of matrix elements of H and  $\beta\beta$ operator between symmetry-projected states. Our calculation used about 40K hours for each set of Hamiltonian parameters.

From Tomas Rodriguez, re his Gogny-based GCM calculations:

| triaxial     | pp/nn pairing | pn pairing   | # GCM points | Core hours        |
|--------------|---------------|--------------|--------------|-------------------|
| $\checkmark$ |               |              | 60           | $7.2 \times 10^4$ |
| $\checkmark$ | $\checkmark$  |              | 300          | $1.8 \times 10^6$ |
| $\checkmark$ | $\checkmark$  | $\checkmark$ | 1500         | $4.4 \times 10^7$ |
|              |               |              |              |                   |

Will add more coordinates as well as additional states, including noncollective excitations, to this variational bais. Problem size grows rapidly but scales well; ship matrix elements of H and  $\beta\beta$  operator to independent processors. Finally: "Renormalization of  $g_A$ "

Forty(?)-year old problem: Single-beta rates,  $2\nu$  double-beta rates, related observables over-predicted.

Brown & Wildenthall: Beta-decay strengths in sd shell



# Problem Particularly Important for $\beta\beta$ Decay





F. lachello, MEDEX'13 meeting

If neutrinoless matrix elements quenched by same amount, experiments are in trouble; rates go like  $(g_A)^4$ .

### Resolving the Issue

**Typical practice:** "Renormalize"  $g_A$  only for  $2\nu$  decay. Assume  $0\nu$  decay unaffected.

**Better practice:** Understand reasons for over-prediction of  $\beta$  and  $2\nu$   $\beta\beta$  rates. Must be due to

- Many-body weak currents, either modeled explicitly as π, ρ exchange, etc., or from effective-field-theory fits. Conventional wisdom says meson-exchange effects in β decay are small; chiral-EFT folk suggest they may not be. More careful EFT work, in progress, should settle question.
- 2. Truncation of model space.

Will be fixed, e.g., in ab-initio shell model.

# Resolving the Issue

**Typical practice:** "Renormalize"  $g_A$  only for  $2\nu$  decay. Assume  $0\nu$  decay unaffected.

Better practice: Understand reasons for over-prediction of  $\beta$  and  $2\nu$   $\beta\beta$  rates. Must be due to

1. Many-body weak currents, either modeled explicitly as  $\pi, \rho$  fits. Conv deca Ths will all be straightened out soon.  $\mu$  ay not be.

More careful EFT work, in progress, should settle question.

2. Truncation of model space.

Will be fixed, e.g., in ab-initio shell model.

# Finally...

Theory has developed tools that promise to reduce the uncertainty in the matrix elements.

Computing requirements will be great, at least by my standards.

# Finally...

Theory has developed tools that promise to reduce the uncertainty in the matrix elements.

Computing requirements will be great, at least by my standards.

That's all; thanks.