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Neutrinolesss Double-Beta Decay

If energetics are right (ordinary
beta decay forbidden). . .

and neutrinos are their own
antiparticles. . .

can observe two neutrons turning
into protons, emitting two
electrons and nothing else.
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Why Double-Beta Decay Is Important
besides the ability to determine whether ν = ν̄

normal inverted
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In usual scenario, rate depends on
square of “effective neutrino mass”

meff ≡
∑
i

miU
2
ei

If lightest neutrino is light:

meff ∝
√

∆m2
sol normal

meff ∝
√

∆m2
atm inverted

But rate also depends on a nuclear matrix element.
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Light-ν-Exchange Matrix Element

Lowest-order expressions

M0ν = MGT
0ν −

g2
V

g2
A

MF
0ν + . . .

with

MGT
0ν =〈F |

∑
i,j

H(rij , E)~σi · ~σjτ+
i τ

+
j |I〉+ . . .

MF
0ν =〈F |

∑
i,j

H(rij , E)τ+
i τ

+
j |I〉+ . . .

H(r, E) ≈ R

r

Corrections are from “forbidden” terms, weak nucleon form factors,
2-body currents (which give 3- and 4-body ββ operators) . . .



Recent Level of Agreement

Same level of
agreement in 2014.

Not so great.

Results of recent calculations, references and comments on request

proton-neutron (pn) QRPA
Shell Model
Interacting Boson Model
Projected HFB
Generator Coordinates

From P. Vogel, 2010

Major recent progress in nuclear-structure theory from in-
creased computing power and new many-body methods.

We are in the process of improving all the models above, con-
necting them to ab initio work or including more correlations.

Focus here on shell model, QRPA, and GCM.
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“Ab Initio” Shell Model
Partition of Full Hilbert Space

P̂HP̂ P̂HQ̂

Q̂HP̂ Q̂HQ̂

P Q

P

Q

Shell model done here

P = valence space
Q = the rest

Task: Find unitary transformation
to make H block-diagonal in P
and Q, with Heff in P reproducing
d most important eigenvalues.

For transition operator M̂ , must
apply same transformation to get
M̂eff.

As difficult as solving full problem. But idea is that N-body
effective operators may not be important for N > 2 or 3.
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Some Options for Ab Initio Part
Coupled Clusters:
In closed shells

|GS〉 = exp
(
tai a

†
aai + tabij a

†
aa

†
baiaj + . . .

)
|HF 〉

a, b > F , i, j < F

Excited states or states in nearby nuclei are excitations of |GS〉.

In-Medium Similarity Renormalization Group: Differential
flow equation

dH(s)

ds
= [η(s), H(s)] , (1)

with η chosen to asymptotically decouple shell-model space
from other states. Normal-ordered 1- and 2-body operators
kept at each step. Can also obtain decay operator.

No-Core Shell Model: See Pieter Maris talk.

Auxiliary Diffusion Monte Carlo: See Stefano Gandolfi talk.
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Coupled-Clusers (CC) Procedure
1. Find good NN and NNN interactions, 1- and 2-body

currents by matching EFT to data in NN scattering, He,
triton decay,. . . X

2. Obtain ground state for closed-shell nucleus 56Ni (28
protons, 28 neutrons). X

3. Use Equation-of-Motion (EOM) CC to obtain low-lying
states in nuclei with A = 57 and 58, eventually 59. X

4. Do Lee-Suzuki mapping of low-lying eigenstates with
A = 57, 58 onto f5/2p3/2p1/3g9/2 shell, determine
shell-model Hamiltonian that reproduces energies. X

5. Do the same thing for the double-beta-decay operator,
with 2-body current treated in normal-ordered 1-body
approximation, at least initially.

6. Put more nucleons in the valence shell (20 for 76Ge), shut
up, and calculate (in the words, allegedly, of Feynman). X

X = done X = done in lighter nuclei



Coupled Cluster Computing
About 50K core hours in 15 shells for 18O.

Scaling: EOM 2-particle attached: N5
pNh

EOM 3-particle attached: N6
pNh

G. R. JANSEN PHYSICAL REVIEW C 88, 024305 (2013)

TABLE II. The first column contains the size of the single-particle
basis employed for different model spaces labeled by Nmax (see
text for details). Columns two and three list the number of matrix
elements for the different model spaces and the memory footprint of
the interaction in our implementation. All numbers are based on the
coupled representation, also known as the jj scheme.

Nmax Size Elements Memory

10 132 145 623 788 1.1 GB
12 182 587 531 302 4.4 GB
14 240 1 963 734 704 14.6 GB
16 306 5 687 352 954 42.4 GB
18 380 14 715 230 212 109 GB
20 458 33 622 665 364 250 GB

implementation. Given the memory requirements, it is clear
that a distributed storage scheme is needed.

In addition to the interaction elements, the Arnoldi vectors
in the diagonalization procedure also has to be stored.
Typically 150 iterations are performed, where one vector
has to be stored for each iteration. Table III lists the size
of a single vector for selected target states in various model
spaces. As an example, for a double precision calculation,
where each element requires 8 bytes of storage, the Arnoldi
diagonalization would require ≈76 Gb of memory for the
Jπ = 3+ state of 6Li with Nmax = 16. Thus, the Arnoldi
procedure quickly becomes the largest memory consumer in
this method. In general, there is a large computational cost
from increasing the total angular momentum of the target state
comparable to increasing the size of the model space.

The interaction used in this work is derived from chiral
perturbation theory at next-to-next-to-next-to-leading order
(N3LO) using the interaction matrix elements of Entem
and Machleidt [28]. The matrix elements of this interaction
employs a cutoff � = 500 MeV and all partial waves up
to relative angular momentum Jrel = 6 are included. The
relevant three- and four-body interactions defined by the chiral
expansion at this order are not included.

For the treatment of center-of-mass contamination, a softer
interaction where the short-range parts are removed via the
similarity renormalization group transformation (SRG) [29],
is used. A cutoff λ = 2.0 fm−1 is sufficient for this purpose.

B. Treatment of center of mass

Recently, Hagen et al. [19,30] demonstrated a procedure
to show that the coupled-cluster wave function separates
into an intrinsic part and a Gaussian for the center-of-mass
coordinate. This is important, because the model spaces
employed in coupled-cluster calculations are not complete
Nh̄ω spaces, where the basis sets consist of all A-body
Slater determinants not exceeding Nh̄ω in excitation energy.
In practical calculations, where the model spaces are not
complete, the separation therefore is not a priori guaranteed.
As a result, the intrinsic Hamiltonian, where all reference to
the center of mass has been removed, is usually employed.

In the EOM-CC approach, one makes further approxima-
tions by truncating the many-body basis before a diagonal-
ization is performed. It therefore is not clear that the final
wave functions separate in the same way as the coupled-
cluster reference state. In the following, I will investigate the

TABLE III. Size of the many-body space in the diagonalization procedure in the Arnoldi algorithm for all states calculated in this work.
All numbers are based on the angular-momentum-coupled representation (jj scheme).

State Nmax = 10 Nmax = 12 Nmax = 14 Nmax = 16 Nmax = 18 Nmax = 20

6He(0+) 516 048 1 323 972 2 981 930 6 088 376 11 513 088 20 176 104
6He(1−) 1 507 930 3 894 028 8 808 688 18 040 354 34 190 482 60 011 982
6He(2+) 2 391 692 6 251 128 14 255 896 29 364 090 55 885 624 98 356 664
6Li(0+) 775 992 1 989 508 4 478 936 9 142 216 17 284 308 30 285 212
6Li(1+) 2 268 746 5 853 534 13 234 004 27 093 632 51 335 514 90 080 136
6Li(2+) 3 595 384 9 391 650 21 409 878 44 088 456 83 893 672 147 629 532
6Li(3+) 4 676 372 12 438 258 28 699 916 59 604 726 114 125 048 201 657 602
18O(0+) 1 908 474 5 022 710 11 485 808 23 680 034 45 071 990 79 331 610
18O(1−) 5 594 899 14 802 528 33 974 801 70 231 288 133 940 727 236 049 974
18O(2+) 8 891 923 23 794 936 55 036 119 114 391 274 219 038 683 387 077 788
18O(2−) 8 897 760 23 803 219 55 047 530 114 406 595 219 058 796 387 083 193
18O(3+) 11 613 562 31 596 862 73 906 056 154 840 950 298 237 942 529 098 382
18O(3−) 11 621 868 31 608 838 73 922 708 154 863 424 298 267 524 529 107 862
18O(4+) 13 629 562 37 905 214 89 982 332 190 504 054 369 757 342 659 327 780
18F(0+) 2 868 568 7 545 420 17 248 686 35 552 756 67 658 660 119 071 548
18F(1+) 8 403 602 22 228 738 51 009 366 105 427 688 201 040 066 354 285 892
18F(2+) 13 362 878 35 742 012 82 642 970 171 734 254 328 788 766 580 957 010
18F(3+) 17 451 568 47 458 334 110 973 350 232 452 890 447 659 068 794 095 862
18F(4+) 20 479 376 56 930 198 135 106 850 285 982 274 554 996 372 989 530 134
18F(5+) 22 363 324 63 896 228 154 444 460 331 158 558 648 765 300 1163 943 530

024305-8



Coupled Clusters in sd Shell: Oxygen
G. Jansen, G. Hagen, A. Signoracci, JE 3
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FIG. 2. (Color online) Excitation spectra of neutron-rich oxygen isotopes. The left columns (red lines) contain the CCEI
results, the middle columns (black lines) the known experimental data, and the right columns (blue lines) the spectra obtained
with the USD shell-model Hamiltonian [7, 8]. A star next to the excitation levels in the right columns indicates that the level
was included in the fit of the USD Hamiltonian. The gray bands indicate states above the neutron decay threshold.

Λ-CCSD(T) ground-state energies in 21,22,23,24O. Our Λ-
CCSD(T) calculations use the model space mentioned
earlier, while the calculations that determine our CCEI
use Nmax = 12 and N1 + N2 + N3 = 12. We be-
lieve that our CCEI results are converged to within
∼ 100 keV. Both our Λ-CCSD(T) and CCEI results are
in good agreement with experimental binding energies.
Our CCEI and Λ-CCSD(T) calculations also agree well
with a variety of recent calculations in the oxygen iso-
topes that start with the same Hamiltonian [54, 55].

If we look more closely, we see that the reference Λ-
CCSD(T) results in 21,22O are in excellent agreement
with our CCEI results. In 23,24O the CCEI results
start to deviate from the Λ-CCSD(T) reference values.
In 24O the CCEI ground-state is less bound by about
3.5 MeV than obtained with Λ-CCSD(T). The difference
indicates that effective three-body interactions induced
by the Okubo-Lee-Suzuki transformation (which we ne-
glect) start to play a role in the CCEI approach when
the number of valence nucleons gets too large. The prob-
lem can be remedied by including these interactions or
by increasing the valence space size.

Next, we compare low-lying CCEI excited-state en-
ergies in 22O with an EOM coupled-cluster calculation

that includes singles and doubles excitations [56]. EOM-
CCSD can accurately describe low-lying states that are
dominated by one-particle-one-hole excitations [48], and
we therefore choose those states for comparison. In 22O
we obtain low-lying 2+ and 3+ states with 2.5 MeV and
3.5 MeV of excitation energy. The CCEI result for the
same states is 2.7 MeV and 4.0 MeV, though the CCEI
result for the 3+ state in 22O is not yet converged; it
moves down by ∼ 150 keV when we increase the model
space size from N = 10 to N = 12 oscillator shells. The
2+ state changes only by ∼ 5 keV indicating that it, by
contrast, is well converged. Standard EOM-CCSD works
well for states that are dominated by one-particle-one-
hole excitations. In our CCEI calculations, correlations
between all particles in the valence space are treated ex-
actly. Therefore, we expect to see some differences in
the computed spectra. For example, in CCEI we are
able to compute the second 0+ state in 22O, which is
dominated by two-particle-two-hole excitations from the
ground-state.

We turn now to carbon. The Λ-CCSD(T) ground-
state energies of 14,15,16C are −104.0 MeV, −104.2 MeV,
and −106.6 MeV, respectively. In 14C the result
agrees well with the experimental ground-state energy



IMSRG
from Heiko Hergert

Published results, which are similar to those from coupled
clusters in oxygen, took only 200-500 hours per isotope.
50K total hours needed to produce oxygen isotopes, vs 500K
coupled-cluster hours.
76Ge in the f5/2p1/2p3/2g9/2 space would increase time by a
factor of 5 to 101.
Overall cost would be be less than that of the subsequent
shell-model calculations for 76Ge.

3-body induced operators not possible in the near future. Need
for data sharing makes parallelization with MPI difficult.

New methods (the “Magnus expansion”) may enable perturbative
evolution of 3-body operators, however. The group is hopeful.

1A caveat: there are issues with extended valence spaces that could
increase the time to convergence or stall the calculation entirely.



Shell Model Diagonalization (Lanczos)
from Mihai Horoi

Model Space Dimension Comments

No Core in 6 major
shells, Nmax = 2
48Ca 3.0× 109 doable with 3-body

f7/2, f5/2, p3/2
p1/2, g9/2, g7/2
76Ge n=12 2.5× 1010 may be doable with 3-body
76Ge n=2 4.3× 1011 next gen., 2-body and 3-body
82Se n=1 3.0× 109 doable with 3-body
82Se n=2 6.4× 1010 next gen., 2-body and 3-body

g9/2, g7/2, d3/2
d1/2, s1/2, h11/2, h9/2
136Xe n=13 1.6× 109 done with 2-body, 3-body doable
136Xe n=2 8.6× 1010 next gen., 2-body and 3-body
130Te n=1 7.6× 1010 next gen., 2-body and 3-body

2n is the number of particles excited from f7/2 and to g7/2
3n is the number of particles excited from g9/2 and to h9/2



AFDMC (Not Via Shell Model)

Aiming initially at calculation of decay of 48Ca

Now can include 3-body (Urbana UIX and similar) forces
almost exactly, implementing chiral Hamiltonians up to N2LO.
Any other operator, including 2-body currents, should incur
just a small extra cost.

Very conservative estimate for the ground state calculation of
48Ca: 100,000-150,000 core hours. Includes optimization of
initial variational wave-function and then projection in
imaginary time.

Larger nuclei and mid-shell nuclei still a complete unknown.



Heavy Deformed Nuclei: Large-Scale QRPA
pn-QRPA inserts complete set of states in intermediate
nucleus, provides single-beta matrix elements from ground
states of initial and final nuclei to this complete set.
Used modern Skyrme functional with tranditional matrix
methods, consumed ≈ 7M CPU hours.

Worth noting:

QRPA gives two sets of intermediate-nucleus
energies and strengths (for transitions involv-
ing initial/final nuclei) but not corresponding
wave functions. Doesn’t tell you how the two
sets of states are related.

.

...

Z, N

Z+1, N-1

Z+2, N-2

J. Terasaki tryng to avoid probelm by replacing boson vaccuum with
quasiparticle coupled-cluster state

|“QRPA”〉 ∝ exp([Y X−1]∗abcdb
†
abb
†
cd) |0〉

=⇒ N exp
(

[Y X−1]∗abcdα
†
aα
†
bα
†
cα
†
d

)
|HFB〉
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QRPA (Jyväskylä)
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EDF
QRPA (this work)

Robledo et al.:
Energy minima at β2 ≈ ±.15

Results different from other
QRPAs in some nuclei, but this
actually points to problems
with method, which is based on
small-ampitude excitations of a
single mean field.
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QRPA Also Challenged by Proton-Neutron Pairing

-5
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76Ge

From SkO’

Simplified interaction in two major shells

Amplitude blows up when mean field state on which it’s based
changes from normal like-particle pair condensate to
proton-neutron pair condensate.



A Better Approach: Generator Coordinates?
Generator Coordinate Method is perhaps best approach if nuclei
don’t have definite shape, can’t be approximated by single mean field.

Construct set of mean fields by constraining coordinate(s), e.g.
quadrupole moment 〈Q0〉. Then diagonalize H in space of
symmetry-restored quasiparticle vacua with different 〈Q0〉.

Collective wave functions
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Figure 1: (a)-(c) Collective wave functions, GT intensity with, (d)-(f) full and, (g)-(i) constant spatial
dependence and (j)-(l) pairing energies for (left) A = 48, (middle) A = 76 and (right) A = 150 decays.
Shaded areas corresponds to regions explored by the collective wave functions.

different deformations (β ≈ +0.40 and β ≈ +0.25, respectively). According to Eq. 6, the final results
depend on the convolution of the collective wave functions with the 0νββ matrix elements as a function
of deformation. In Fig. 1(d)-(f) we show schematically -shaded circles- the areas of the GT intensity
explored by the collective wave functions. We observe, on the one hand, that configuration mixing is
very important in the final result because several shapes can contribute to the value of NME, especially
in A = 48 and 76. On the other hand, we see that the regions with largest values of the GT intensity
are excluded by the collective wave functions. For example, calculations assuming spherical symmetry
give systematically larger NME -except for A = 96- as we show in Figure 2.

To summarize, we have presented a method for calculating 0νββ nuclear matrix elements based on
Gogny D1S Energy Density Functional including beyond mean field effects such as symmetry restoration
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β2

But other important non-shape degrees of freedom still missing.



A Better Approach: Generator Coordinates?
Generator Coordinate Method is perhaps best approach if nuclei
don’t have definite shape, can’t be approximated by single mean field.

Construct set of mean fields by constraining coordinate(s), e.g.
quadrupole moment 〈Q0〉. Then diagonalize H in space of
symmetry-restored quasiparticle vacua with different 〈Q0〉.
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Adding Proton-Neutron Correlations to GCM
GCM missing physics that affects pn-QRPA calculations.

So we generalize GCM in a way that avoids wild QRPA
behavior:

1. pp and nn pairing currently treated in mean-field theory,
but not pn pairing. So use quasiparticles that mix not only
particles and holes, but also protons and neutrons.

2. Constrain pn pairing as well as deformation, i.e. minimize

H ′ = H − λQ 〈Q0〉 − λP 〈P †
0 〉

with

P †
0 =

∑
l

[
a†l a

†
l

]L=0,S=1,T=0

MS=0

The pn operators have zero expectation value at HFB minimum,
but we add HFB states constrained to have non-zero values.
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Results for 76Ge
N. Hinohara and JE

Can build pn correlations into mean field. Frozen out in mean
field minimum, but included dynamically in GCM.
Work with several-term separable interaction in two shells.
Collective pn-pairing wave functions
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Proton-neutron pairing significantly reduces matrix element.



More Results in 76Ge

No deformation coordinate
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Matrx element about the same with and without deformation
coordinate.
Next steps: combine with DFT or ab initio interaction, include
other collective and non-collective degrees of freedom (jacking
up computing needs).



GCM Computing
Most time in calculation of matrix elements of H and ββ
operator between symmetry-projected states. Our calculation
used about 40K hours for each set of Hamiltonian parameters.

From Tomas Rodriguez, re his Gogny-based GCM calculations:

triaxial pp/nn pairing pn pairing # GCM points Core hours

X — — 60 7.2× 104

X X — 300 1.8× 106

X X X 1500 4.4× 107

Will add more coordinates as well as additional states,
including noncollective excitations, to this variational bais.
Problem size grows rapidly but scales well; ship matrix
elements of H and ββ operator to independent processors.



Finally: “Renormalization of gA”

Forty(?)-year old problem: Single-beta rates, 2ν double-beta
rates, related observables over-predicted.

Brown & Wildenthall: Beta-decay strengths in sd shell

NUCLEAR SHELL MODEL 43 

() parameters can be empirically extracted as the residuals between a set 
of experimental values and the values of the matrix elements calculated 
with the free-nucleon operators. Our results are discussed in Sections 3.2 
and 3.3 for the GT and M I  operators, respectively. Values for the () 
parameters in the effective operator can also be calculated from fun­
damental considerations. Our empirical results are compared with such 
calculations in Section 3.4. 

3.2 Gamow-Teller Results 

The relationships between experimental GT matrix elements from sd-shell 
beta decays and the predictions of the W interaction have been studied 
comprehensively in (57). This study incorporated a compilation of extant 
beta decay in A = 17-39 nuclei together with shell-model calculations 
for all the initial and final states concerned. The essential conclusions 
drawn in (57) can be inferred from the comparisons of experimental and 
theoretical matrix elements presented in Figure 6. The values of the 
matrix elements are normalized to reflect the 3(N - Z) sum rule, such 
that R(GT) = M(GT)/W, where W = 19A/9vl[(2Jj+ 1)3(Nj _Zj)]1/2 for 
Ni i= Zi and W = 19A/9vl[(2Jr+ 1)3(Nr - Zr)]1/2 for Ni = Zi' The matrix 
elements M(GT) are obtained from it = 6170j[B(F)+B(GT)], where 
B(GT) = M(GT)2j(2Ji + I). B(GT) is the GT transition probability (which 
depends on the transition direction). M(GT) is the GT reduced matrix 
element (which is independent of the transition direction). 

It is evident from inspection of the left side of Figure 6 that the exper­
imental values of GT matrix elements in the sd shell are systematically 
smaller than the predictions of the W-interaction wave functions coupled 
with the free-nucleon operator, by a factor of about 0.77 (indicated by the 
lower line on the left side of Figure 6). The same wave functions combined 
with the effective operator account for most of the data extremely well. 

R(GT) 

FREE-NUCLEON EFFECTIVE 
0.8 

0.2 
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THEORY 
Figure 6 Theoretical vs experimental R(GT) matrix elements (see Sections 3 and 3.2). 
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Problem Particularly Important for ββ Decay

Effective gA needed for two-neutrino decay in shell model and IBM-2

One obtains gA,eff
IBM-2~0.6-0.5. 

The extracted values can be parametrized
 

as
A similar analysis can be done for the ISM 
for which gA,eff

ISM~0.8-0.7.

2 0.2
, 1.269IBM

A effg A−=

0.12
, 1.269ISM

A effg A−=

Effective axial vector coupling constant in nuclei from 2νββ

F. Iachello, MEDEX’13 meeting

If neutrinoless matrix elements quenched by same amount,
experiments are in trouble; rates go like (gA)4.



Resolving the Issue

Typical practice: “Renormalize” gA only for 2ν decay. Assume
0ν decay unaffected.

Better practice: Understand reasons for over-prediction of β
and 2ν ββ rates. Must be due to

1. Many-body weak currents, either modeled explicitly as
π, ρ exchange, etc., or from effective-field-theory fits.
Conventional wisdom says meson-exchange effects in β
decay are small; chiral-EFT folk suggest they may not be.

More careful EFT work, in progress, should settle question.

2. Truncation of model space.

Will be fixed, e.g., in ab-initio shell model.

Ths will all be straightened out soon.
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Finally. . .

Theory has developed tools that promise to reduce the
uncertainty in the matrix elements.

Computing requirements will be great, at least by my
standards.

That’s all; thanks.
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