Formation of Clusters in stable and unstable nuclei explored by Antisymmetrized Molecular Dynamics

M. Kimura (Hokkaido University)

Collaborators: Y. Chiba, T. Baba (Hokkaido Univeristy)

Plan of this talk

O Introduction

- Clustering phenomena and typical examples
- Theoretical framework of antisymmetrized molecular dynamics (AMD)
- **O** Clusters in stable nuclei (²⁴Mg)
 - Clusters in the highly excited states of ²⁴Mg
 - IS monopole transitions to probe them
- **O** Clusters in neutron-rich nuclei
 - Nuclear molecule with molecular-orbital bonding
 - From dimers to trimers and tetramers
- **O** Summary

Introduction: Evolution of clusters

Introduction: Clustering phenomena

Degrees-of-freedom of nuclear excitation

- © Single particle excitation
- © Collective excitation
- **©** Cluster excitation

Famous cluster states in light stable nuclei

⁸Be: $\alpha + \alpha$

GF Monte Carlo R.B.Wiringa, et al., PRC62, 014001(2000). ¹²C*(0_2^+): 3 α Hoyle state 3 α BEC state

A. Tohsaki et al.

PRL87 (2001).

 $^{16}O^*(0_6^+)$:

 4α BEC state

Threshold Energy Rule of Clustering

: MeV/A	O Cluste	er state that de	es appe ecompo	ear at t tose the	hresho system	ld energ 1 into clu	ies 1sters	
		⁸ Be	¹² C	¹⁶ O	²⁰ Ne	K. Ikeda, P ²⁴ Mg	TPS Ex. 4 ²⁸ Si	³² S
	9 0 0 0 0	ω	(7.27)	ಯಾ (14.44)		(28.48)	(38.46)	(45.41)
	1		©	©⊃ (7.16)	©∞ (11.89)	©‱ (21.21)	ලිකත (31.19)	©ccccco (38.14)
	88 88			Ø	@:: (4.73)	©© ©© (13.93)	(24.03) (0000 (0000) (23.91)	(30.96) (Ccc) (30.86)
	800				Ne	(Ne) (9.32)	(19.29) (Ne ^{cco} (OC) (16.75)	(26.25) (Ne ^{cco}) (00C) (23.70)
						¢	ଲ୍ଲି ୦ (9.98)	₩©©(18.97) ₩₽∞ (16.93) ©© (16.54)
0 MeV =							9	(§))> (6.95) (§)

Cluster Nucleosyntheis

Theoretical Framework of Antisymmetrized Molecular Dynamics

^O Wave function (Spatially Localized Gaussians)

Y. Kanada-En'yo, M. K and A. Ono, *Prog. Theor. Exp. Phys.* (2012) 01A202. "Antisymmetrized molecular dynamics and its applications to cluster phenomena"

(frictional cooling)

Clusters in stable nuclei

Clusters in the highly excited states of ²⁴Mg
IS monopole transitions to probe them

A Frontier of Nuclear Cluster Physics

O²⁴Mg: well-known low-lying collectivity, triaxial deformation

²⁴Mg highly excited cluster states

Theoretical Framework of Antisymmetrized Molecular Dynamics

O Microscopic Hamiltonian (A-nucleons)

Gogny D1S interaction, No spurious center-of-mass energy $\hat{H} = \sum_{i}^{A} \hat{t}_{i} - \hat{t}_{c.m.} + \sum_{i < j}^{A} \hat{v}_{\text{GognyD1S}}(r_{ij}) + \sum_{i < j}^{Z} \hat{v}_{\text{Coulomb}}(r_{ij})$

© Wave function (Spatially Localized Gaussians)

No a-priori assumption on cluster structure

Step 1: Energy variation with constraint

Step 2: Angular momentum projection

Optimized wave functions are projected to the eigenstates of \hat{f} $\hat{P}_{MK}^{J}\Psi^{\pi}(\beta,\gamma) = \frac{2J+1}{8\pi^{2}}\int d\Omega D_{MK}^{J*}\hat{R}(\Omega)\Psi^{\pi}(\beta,\gamma)$

□ Triaxially deformed energy minimum

Low-lying quadrupole collectivity

Description of highly excited cluster states

Description of highly excited cluster states

Various structure that are never seen on the β - γ plane

- A Rich Variety of Clusters ! : C+C, α +Ne, 2α +O, 6α
- Clustering is a fundamental degrees-of-freedom of nuclear excitation

C+C cluster states with different orientation of C

Description of highly excited cluster states

- All the basis wave functions (collective states and clusters) are superposed
 - ⇒ Most CPU demanding part in AMD calculation (~ 500 basis wave functions)

Cluster states in the vicinity of the thresholds

How to observe them? A key observable: isoscalar monopole transition

Isoscalar monopole transition strength is a good prove for Clustering

A Key Observable: Isoscalar Monopole Transition Strength

Its already measured @ RCNP ${}^{24}Mg(\alpha, \alpha'){}^{24}Mg^*$ at 0 degree

T. Kawabata, Proceedings of Cluster12 Conf.

A Key Observable: Isoscalar Monopole Transition Strength

The full AMD calculation shows several states with strong isoscalar monopole transitions
Those states are associated with various cluster states
6α states is embedded in the giant resonace
A good accordance with the observed data (Promising !)

Prospects in study of highly excited cluster states

Highly excited cluster states are now	²⁴ Mg	²⁸ Si	³² S			
theoretically and experimentally accessible !	(28.48)	(38.46)	(45.41)			
Many fascinating topics	©∞∞ (21.21)	©∞∞ (31.19)	©∞∞∞ (38.14)			
An example	0 ^(14.05)	(24.03) (C) (C) (C) (C)	0 ^(30,96)			
PHYSICAL REVIEW C 88, 064313 (2013)						
Isoscalar giant resonance strengths in ³² S and possible excitation of superdeformed and ²⁸ Si + α cluster bandheads						
	¢	(Ng) (9.98)	(0.93) 00 (16.54)			
		S)	(\$1)⊃ (6.95)			
			S			

Clusters in neutron-rich nuclei

- Nuclear molecule with molecular-orbital bonding
- From dimers to trimers and tetramers

Frontiers of Nuclear Cluster Physics

\bigcirc Clusters in neutron-rich nuclei \Rightarrow "nuclear molecules"

Nuclear molecules with heavier masses

© Extension of "molecular-orbital bonding" to heavier clusters

Nuclear molecules with heavier masses

 deeply bound 10 neutrons are well confined within α and ¹⁶O clusters
2 valence neutrons distribute entire system (molecular-orbital bonding) Analogous to σ-molecular orbit in Be isotopes

Nuclear molecules with heavier masses

Reduction of excitation energies of molecular-orbital bonding states

Dimers, trimers and tetramers

© Extension of "molecular-orbital bonding" to many clusters \Rightarrow trimers and tetramers ⁶He trimer (^{16}C) dimer (^{10}Be) α +¹⁶C : Hartree-Fock $^{16}C:AMD$ $^{14}C:AMD$ J. A. Maruhn et al. NPA833(2010) T. Suhara et al. PRC82(2010) T. Baba et al. submitted to PRC trimer (^{16}C) ⁶He tetramer (^{22}O) α + 🖁 🗿 ¹⁶O (4 α): Cranked Hartree-Fock T. Ichikawa, et al., PRL 107 (2011).

Summary

O Introduction

- Clustering phenomena and typical examples
- Antisymmetrized molecular dynamics (AMD)
- O Clusters in stable nuclei
 - Evolution of clusters as function of excitation energy
 - Clusters in ²⁴Mg
 - Monopole transition strengths as a probe of clusters
- © Clusters in neutron-rich nuclei
 - Nuclear molecule with molecular-orbital bonding
 - From dimers to trimers and tetramers

© Summary

Summary & Perspective

O Highly excited cluster states are now theoretically and experimentally accessible !

backups

IS strength Calculation

IS monopole strength Calc.

IS monopole strength Calc.

IS monopole strength Calc.

1. Basis wave function

$\Psi^{\pi}(eta_0,\gamma_0),\Psi^{\pi}(eta_1,\gamma_1),,$		$\Psi^{\pi}(N_{x0}, N_{y0}, N_{z0}), \Psi^{\pi}(N_{x1}, N_{y1}, N_{z1}),,$			$\exp(\alpha \hat{O})\Psi^{\pi}(\beta_0,\gamma_0),\exp(\alpha \hat{O})\Psi^{\pi}(\beta_1,\gamma_1),$			
on $\beta - \gamma$ energy surface		obtained by H.O. constraint clusters, mp-mh configurations			IS monopole operator $\times \beta - \gamma$ basis $\hat{O} = \sum_{i=1}^{A} \hat{r}_{i}^{2},$			
			Basis	n	n_1	m_1/m_0	$\sqrt{m_3/m_1}$	
I		% of EV	$\Phi_{\beta\gamma}$	26	(35)	20.3	24.2	
			$\Phi_{\beta\gamma} + \Phi_{IS0} + \Phi_{\Delta N}$	90 (103)	22.2	25.2	
U.]	Almost 100%		Exp.	82	± 9	$21.9^{+0.3}_{-0.2}$	$24.7^{+0.5}_{-0.3}$	
[A.			Peru et al. (QRPA)	g)4	20.57		
EWSR fraction	5 10	,	15 Excitation Ene	20 ergy (Me	V)	25	30	

