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The intensity frontier

Many nuclear physics and nuclear astrophysics reasons to study 
nuclei!! 	



Particle physics is at an interesting juncture: over the next 
decade(s) many experiments address the intensity frontier	



Targets are nuclei (C, Fe, Si, Ar, Ge, Xe, Pb, CHx, H2O) 	



Extraction of neutrino mass hierarchy and  
mixing parameters at LBNF requires knowing  
energies/fluxes to high accuracy	



Nuclear axial & transition form factors	



Nuclear structure in neutrino DIS	



~10% effects on oscillation parameters  
[C Mariani, INT workshop 2013]
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LBNE, δCP Sensitivity 

DNP Townmeet  

Need energy to distinguish between different δCP 

Need to know neutrino 
energy to better than  
about 100 MeV 

Appearance probability: 
Pµ " e 

[U Mosel FSNu town meeting]



The intensity frontier

Laboratory searches for new physics	



Dark matter detection: nuclear recoils as signal 
Nuclear matrix elements of exchange current	



µ2e conversion expt: similar requirements 	



If(when) we detect dark matter or µ→e, we  
will need precise nuclear matrix elements to learn 
what it is	



Nuclear physics is the new flavour physics!

http://www.hep.ucl.ac.uk/darkMatter/



Precision nuclear physics

Our job to develop the tools for precision predictions 

Establish quantitative control through  
linkages between different methods	



QCD forms a foundation  
determines few body  
interactions & matrix  
elements	



Match existing EFT and  
many body techniques  
onto QCD

33
3

3

QCD

Exact many body:	


GFMC, NCSM,	



lattice EFT

Shell model, 	


coupled cluster, 	



configuration-interaction

Density 
Functional,	


Mean field

Z
N

Si

Xe

Ge

Ar



Quantum Chromodynamics

Lattice QCD: tool to deal with quarks  
and gluons	



Formulate problem as functional integral  
over quark and gluon d.o.f. on R4 
 

Discretise and compactify system	



Finite but large number of d.o.f  (1010)	



Integrate via importance sampling 
(average over important configurations)	



Undo the harm done in previous steps

hOi =
Z

dAµdqdq̄O[q, q̄, A]e�SQCDhOi =
Z

dAµdqdq̄O[q, q̄, A]e�SQCD



Spectroscopy

How do we measure the proton mass?	



Create three quarks at a source: and annihilate the three quarks 
at sink far from source	



QCD adds all the quark anti-quark pairs and gluons 
automatically: only eigenstates with correct q#’s propagate

time



Spectroscopy

Correlation decays  
exponentially with distance 
 
 
 
at late times 
 

Ground state mass revealed  
through “effective mass plot”

C(t) =

X

n

Zn exp(�Ent)

! Z0 exp(�E0t)

M(t) = ln


C(t)
C(t + 1)

�
t!1�! E0

all eigenstates with q#’s of proton



QCD spectrum

[summary by A Kronfeld, 1209.3468]

After 30 years of developments	



😍 Ground state hadron spectrum  
reproduced
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FIG. 15. Our results for the masses of charmed and/or bottom baryons, compared to the experimental results where available
[8, 10, 12]. The masses of baryons containing nb bottom quarks have been o↵set by �nb · (3000 MeV) to fit them into this plot.
Note that the uncertainties of our results for nearby states are highly correlated, and hyperfine splittings such as M⌦⇤

b
� M⌦b

can in fact be resolved with much smaller uncertainties than apparent from this figure (see Table XIX).

[Z Brown et al 1409.0497]

and predicted



QCD spectrum

😍 Precise isospin mass splittings in QCD+QED
Figure 2:
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Figure 2: Mass splittings in channels that are stable under the strong and electromagnetic interactions. Both
these interactions are fully unquenched in our 1+1+1+1 flavor calculation. The horizontal lines are the experi-
mental values and the grey shaded regions represent the experimental error [29]. Our results are shown by red
dots with their uncertainties. The error bars are the squared sums of the statistical and systematic errors. The
results for the �M

N

, �M⌃ and �M
D

mass splittings are post-dictions, in the sense that their values are known
experimentally with higher precision than from our calculation. On the other hand, our calculations yields
�M⌅, �M⌅cc splittings and the Coleman-Glashow difference �CG which have either not been measured in
experiment or are measured with less precision than obtained here. This feature is represented by a blue shaded
region around the label.
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[S. Borsanyi et al. [BMWc] 1406.4088]



Nuclear Spectra



QCD for Nuclear Physics

QCD (+EW) describes nuclear physics 	



Can compute the mass of  
lead nucleus ... in principle 	



In practice: a hard problem	



At least two exponentially  
difficult challenges	



Noise: probabilistic method  
so statistical uncertainty grows  
exponentially with A	



Contraction complexity grows factorially



QCD for Nuclear Physics

Quarks need to be tied together in all possible ways	



Ncontractions = Nu!Nd!Ns!  
 

!

!

!

!

!

Managed using algorithmic trickery [WD & Savage, WD & Orginos; Doi & Endres]	



Study up to N=72 pion systems, A=5 nuclei



Light nuclei

Light hypernuclear spectrum @ 800 MeV
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QCD Nuclei (s=0,-1)
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FIG. 8: Summary of the results obtained in n
f

= 2 + 1 or n
f

= 3 lattice QCD calculations of
the binding energies of 3He, 3

⇤

H, 4He and 4

⇤

He. The red circles correspond to the physical binding
energies (for 4

⇤

He experimental determinations of both iso-doublet states are shown). For 3

⇤

He,
both J = 1/2 and 3/2 states were extracted, with the higher spin state being more tightly bound
for this SU(3)

f

symmetric quark mass.

Using two body potentials extracted from LQCD, and solving the three- and four-body
Schrödinger equations, the HALQCD collaboration have also investigated few-body systems
[90]. As noted in this study, this approach neglects three- and four- body interactions, but
provides an interesting guide as higher body forces are expected to be small. Indeed, the
two-body interaction alone is su�cient to bind the 4He state at SU(3)-symmetric quark
masses where the pion masses are in the range 500 MeV < m

⇡

< 1200 MeV.
The improved contraction methods discussed above have also enabled the construction

of correlation functions with the quantum numbers of significantly larger nuclei such as
8Be, 12C, 16O and 28Si [174], opening the way for studies of these systems. Examples of
these correlations are shown in Fig. 11, and, while the correlators for A < 20 show signs of
the expected approach to single exponential behaviour, no statistically meaningful binding
energies could be extracted at the statistical precision used in this preliminary investigation.
Indeed, it appears that the noise is becoming exponentially worse (with a small prefactor)



Onium-nucleus binding

Quarkonium interactions with light 
quark systems via colour van der Waals	



Colour stark effect: onium induces 
dipoles in nucleons that attract	



Brodsky et al. [PRL64,1011 (1990)] suggested 
large binding: 9Be–ηc ~ 400 MeV	



Nuclei not point-like: gluons screened 
Typical model estimates now:  
J/Ψ–A ~ 10 MeV	



Eta-mesic nuclei possibly seen at COSY	



ATHENNA experiment at JLab12GeV 
looking for charmonium nuclei

Quarkonia in Nuclei

Unique Probe of QCD E↵ects

Heavy quarkonia share no
valence quarks with nuclei

Normally dominant quark
exchange suppressed to
second order

Dominated by two-gluon
exchange
(color van der Waals)

Color Stark e↵ect:
Chromoelectric field induces
dipoles in neutral hadrons
that interact
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S. D. Cohen (U Washington) Nucleus-Onium Bound States 2014 Mar 30 2 / 19

Quarkonia in Nuclei

Model History

Brodsky et al. [PRL64,1011 (1990)]

noted features of pp scattering near
open-charm threshold

No Pauli blocking; no quark-exchange
⌘ch: 19 MeV, ⌘c9Be: 407 MeV(!)

Wasson [PRL67,2237 (1991)] points out
the nucleus is not pointlike

Charm binding saturates for large A
⌘ch: 0.8 MeV, ⌘c208Pb: 27 MeV
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FIG. 3. Binding energies of strangeonium (upper panel)
and charmonium (lower panel) systems from Table IV and
Table V. The inner bands correspond to the statistical un-
certainty, while the outer bands correspond to the statistical
and systematic uncertainties combined in quadrature. The
right most (gray) band for each system corresponds to the
infinite volume estimate, resulting from a weighted average of
the L = 32 and L = 48 (where available) energies.

in our results. We speculate that this behavior arises
from the fact that the overlap of the momentum pro-
jected sink onto a shallow bound state is suppressed by a
form factor at non-zero rapidity, while the overlap onto
the continuum states remains of order unity, dictated by
the lattice volume. While the bound state dominates the
e↵ective mass plateau for � ⇠ 0, its contribution will be
significantly suppressed for interpolating operators with
relative momenta that are of order or greater than the
binding momentum of the state. At intermediate times
from the source, the e↵ective mass plots associated with
such systems will exhibit a “plateau” with an energy that
exceeds the actual energy of the bound state. Toy models
of such systems, with two or more states, can be read-
ily constructed that exhibit such behavior, and there are
sets of natural-sized parameters that recover the results
presented in fig. 5 within uncertainties. Only at very
large times can the true ground state be extracted, but
at these times the signal-to-noise ratio has degraded to
the point where the energy cannot be usefully extracted.
The observed linearity in �2 is consistent with this sce-
nario, but, it remains a conjecture at this point. In order
to convincingly diagnose the origin of this momentum
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FIG. 4. Binding energies of the A-⌘s and A-⌘c systems as
functions of atomic number. The shaded region corresponds
to a (theoretically unmotivated) quadratic fit to the results.
[FIXME: A linear fit would make more sense then..]

dependence, a more extensive set of calculations are re-
quired, involving single- and multi-hadron sources and
sinks, and utilizing the full machinery of the variational
method [30, 31], as has been implemented successfully in
deconstructing the single hadron spectra, e.g. Ref. [32],
and meson-meson interactions, e.g. Ref. [33].

While our current understanding of the observed
relative-velocity dependence of the extracted binding en-
ergies of the quarkonium-nucleus systems remains incom-
plete, and the associated systematic uncertainties must
be quantified in future calculations, the ground state of
these systems are clearly bound states and not scatter-
ing states. While, from the energies extracted at non-zero
relative velocity, as seen in fig. 5, we estimate that the
systematic shift of the binding energy associated with the
momentum dependence of the binding energy is small.
[FIXME: How? This needs explanation] It is most likely
that removing this systematic will lead to a deeper bind-
ing energy than we have estimated, but within the quoted
uncertainties.

V. CONCLUSIONS

In this paper, we have used lattice QCD calculations to
demonstrate the existence of bound nucleus-quarkonium

Onium-nucleus binding

NPLQCD 1410.XXXX	



Straightforward LQCD 
calculation	



Study at mπ~800 MeV using 
strangonium and charmonium 	



Energy shift from Mη+MA	



Multiple volumes to extract 
infinite volume binding energy	



Binding energy vs A	



Very strong binding!
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Heavy quark universe	



LQCD and nuclear EFT are now coming together	



For heavy quarks, even spectroscopy requires QCD matching: 
 
 
 
 
 
 
 
 
 

Equally important for matrix elements

[Barnea, et al. 1311.4966]
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Nuclear Structure



Current-nucleus interaction	



Born approximation – interacts with a single 
nucleon  
 

Interact non-trivially with multiple nucleons 
 

Second term may be significant	



Eg.: important for scalar DM interactions  
[Prezeau et al PRL 2003]	



Would lead to significant uncertainty

known from expt/LQCD

External currents and nuclei

poorly known!

which is two orders lower than the contribution from the impulse approximation. This term
is the origin of the enhancement suggested in Ref. [1]. The isoscalar interactions with the
strange and heavier quarks do not contribute to the non-derivative interaction with pions
and, as such, are not expected to be enhanced in WIMP-nucleus interactions. To determine
the WIMP-nucleus interactions quantitatively, nuclear matrix elements of these operators
need to be calculated.

FIG. 1: Some of the diagrams contributing to nuclear �-terms. The left panel shows the leading
order contribution to the single-nucleon �-term in �PT. The middle (pion-exchange) and right
(“D2-terms” contributions from Eq. (7)) panels show contributions to nuclear �-terms at next-to-
leading order in KSW power counting [13–15]. The crossed box corresponds to an insertion of the
light-quark mass matrix.

Ideally, one would simply determine the matrix element of the Lagrange density in Eq. (2)
in the ground state of a given nucleus, at the relevant momentum transfer, without perform-
ing the intermediate matchings in Eq. (3) and in Eq. (5). This would sum the contributions
from the hadronic EFT to all orders in perturbation theory, and provide the necessary ma-
trix elements directly from QCD. While such formidable calculations cannot currently be
accomplished, the forward matrix element of the scalar-isoscalar operator can be determined
in light nuclei, albeit with significant uncertainties, by combining recent lattice QCD cal-
culations of the binding energies with the corresponding experimental values. The mass of
the ground state of a nucleus with Z protons and N neutrons, denoted by |Z,N(gs)i, is
E(gs)

Z,N = E(gs,�)
Z,N + �Z,N , where

�Z,N = hZ,N(gs)| muuu+mddd |Z,N(gs)i (8)

is the nuclear �-term, and E(gs,�)
Z,N is the energy of the nuclear ground state in the limit of

massless up- and down-quarks (assuming that the nucleus is bound in this limit). With
isospin symmetry, mu = md = m, the nuclear �-term becomes

�Z,N = mhZ,N(gs)| uu+ dd |Z,N(gs)i = m
d

dm
E(gs)

Z,N

=
h
1 + O

⇣
m2

⇡

⌘ i m⇡

2

d

dm⇡
E(gs)

Z,N , (9)

where we have used the leading contribution to the Gell-Mann–Oakes–Renner (GMOR)
relation [4, 43],

�2mh0| uu+ dd |0i = m2
⇡f

2
⇡

h
1 + O

⇣
m2

⇡

⌘ i
, (10)

to relate the quark and pion masses. The relation between the pion mass and the average
light-quark mass has been precisely determined with lattice QCD [44, 45]. The linear relation
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External currents and nuclei

Power counting of nuclear effective field theory:	



1-body currents are dominant	



2-body currents are sub-leading but non-negligible  
Higher-body currents are even less important	



Determine one body contributions from single nucleon	



Determine few-body contributions from A=2,3,4... 	



Match EFT and many body methods to LQCD to make 
predictions for larger nuclei



Nuclear matrix elements

For deeply bound nuclei, use the techniques as for single hadron 
matrix elements 
 
 
 
 
 
 
 

At large time separations gives matrix element of current	



For near threshold states, need to be careful with volume effects	



Calculations of matrix elements of currents in light nuclei just 
beginning for A<5

Σ
permutations

3 pt function 2 pt function



Background field methods

Hadron/nuclear two-point functions in 
presence of fixed eternal fields are modified	



Eg: fixed B field 

!

QCD calculations with multiple fields enable 
extraction of coefficients of response	



Eg: magnetic moments, polarisabilities, …	



Not restricted to simple EM fields (axial, 
twist-2,…)

2

Background electromagnetic fields have been used ex-
tensively to calculate electromagnetic properties of single
hadrons, such as the magnetic moments of the lowest-
lying baryons [6, 7, 8, 9, 10, 11, 12, 13, 14] and
electromagnetic polarizabilities of mesons and baryons
[9, 12, 15, 16, 17]. In order that the quark fields, with
electric charges Q

u

= +2
3 and Q

d,s

= � 1
3 for the up-,

down- and strange-quarks, respectively, satisfy spatially-
periodic boundary conditions in the presence of a back-
ground magnetic field, it is well-known [18] that the lat-
tice links, U

µ

(x), associated with the U

Q

(1) gauge field
are of the form

U

µ

(x) = e

i

6⇡Q

q

ñ

L

2 x1�

µ,2 ⇥ e

�i

6⇡Q

q

ñ

L

x2�

µ,1�

x1,L�1
, (1)

for quark of flavour q, where ñ must be an integer. The
uniform magnetic field, B, resulting from these links is

eB =
6⇡ñ

L

2
ẑ , (2)

where e is the magnitude of the electric charge and ẑ is
a unit vector in the x3-direction. In physical units, the
background magnetic fields exploited with this ensemble
of gauge-field configurations are e|B| ⇠ 0.046 |ñ| GeV2.
To optimize the re-use of light-quark propagators in the
production, calculations were performed for U

Q

(1) fields
with ñ = 0, 1,�2,+4. Four field strengths were found
to be su�cient for this initial investigation. With three
degenerate flavors of light quarks, and a traceless electric-
charge matrix, there are no contributions from coupling
of the B field to sea quarks at leading order in the elec-
tric charge. Therefore, the magnetic moments presented
here are complete calculations (there are no missing dis-
connected contributions).

The ground-state energy of a non-relativistic hadron
of mass M , and charge Qe in a uniform magnetic field is

E(B) = M +
|QeB|

2M

� µ · B
� 2⇡�

M0 |B|2 � 2⇡�

M2Tij

B

i

B

j

+ ... , (3)

where the ellipses denote terms that are cubic and higher
in the magnetic field, as well as terms that are 1/M

suppressed [19, 20]. The first contribution in eq. (3) is
the hadron’s rest mass, the second is the energy of the
lowest-lying Landau level, the third is from the interac-
tion of its magnetic moment, µ, and the fourth and fifth
terms are from its scalar and quadrupole magnetic polar-
izabilities, �

M0,M2, respectively (T
ij

is a traceless sym-
metric tensor [21]). The magnetic moment term is only
present for particles with spin, and �

M2 is only present
for j � 1. In order to determine µ using lattice QCD
calculations, two-point correlation functions associated
with the hadron or nucleus of interest in the j

z

= ±j

magnetic sub-states, C

(B)
j

z

(t), can be calculated in the
presence of background fields of the form given in Eq. (1)
with strength B = ẑ · B. The energies of ground-states
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FIG. 1: The correlator ratios R(B) as a function of time
slice for the various states (p, n, d, 3He, and 3H) for ñ =
+1,�2, +4. Fits to the ratios are also shown.

aligned and anti-aligned with the magnetic field, E

B

±j

,
will be split by spin-dependent interactions, and the dif-
ference, �E

(B) = E

B

+j

� E

B

�j

, can be extracted from the
correlation functions that we consider. The component
of �E

(B) that is linear in B determines µ via Eq. (3).
Explicitly, the energy di↵erence is determined from the
large time behaviour of

R(B) =
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. (4)

Each term in this ratio is a correlation function with the
quantum numbers of the nuclear state that is being con-
sidered, which we compute using the methods of Ref. [3].
As discussed in Ref. [14], subtracting the contribution
from the correlation functions calculated in the absence
of a magnetic field reduces fluctuations in the ratio, en-
abling a more precise determination of the magnetic mo-
ment. The energy splitting is extracted from a correlated
�

2-minimization of the functional form in Eq. (4) using
a covariance matrix generated with the jackknife proce-
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Background electromagnetic fields have been used ex-
tensively to calculate electromagnetic properties of single
hadrons, such as the magnetic moments of the lowest-
lying baryons [6, 7, 8, 9, 10, 11, 12, 13, 14] and
electromagnetic polarizabilities of mesons and baryons
[9, 12, 15, 16, 17]. In order that the quark fields, with
electric charges Q

u

= +2
3 and Q

d,s

= � 1
3 for the up-,

down- and strange-quarks, respectively, satisfy spatially-
periodic boundary conditions in the presence of a back-
ground magnetic field, it is well-known [18] that the lat-
tice links, U

µ

(x), associated with the U

Q

(1) gauge field
are of the form

U

µ

(x) = e
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q

ñ

L

2 x1�

µ,2 ⇥ e

�i

6⇡Q

q

ñ

L

x2�

µ,1�

x1,L�1
, (1)

for quark of flavour q, where ñ must be an integer. The
uniform magnetic field, B, resulting from these links is

eB =
6⇡ñ

L

2
ẑ , (2)

where e is the magnitude of the electric charge and ẑ is
a unit vector in the x3-direction. In physical units, the
background magnetic fields exploited with this ensemble
of gauge-field configurations are e|B| ⇠ 0.046 |ñ| GeV2.
To optimize the re-use of light-quark propagators in the
production, calculations were performed for U

Q

(1) fields
with ñ = 0, 1,�2,+4. Four field strengths were found
to be su�cient for this initial investigation. With three
degenerate flavors of light quarks, and a traceless electric-
charge matrix, there are no contributions from coupling
of the B field to sea quarks at leading order in the elec-
tric charge. Therefore, the magnetic moments presented
here are complete calculations (there are no missing dis-
connected contributions).

The ground-state energy of a non-relativistic hadron
of mass M , and charge Qe in a uniform magnetic field is

E(B) = M +
|QeB|

2M

� µ · B
� 2⇡�

M0 |B|2 � 2⇡�

M2Tij

B

i

B

j

+ ... , (3)

where the ellipses denote terms that are cubic and higher
in the magnetic field, as well as terms that are 1/M

suppressed [19, 20]. The first contribution in eq. (3) is
the hadron’s rest mass, the second is the energy of the
lowest-lying Landau level, the third is from the interac-
tion of its magnetic moment, µ, and the fourth and fifth
terms are from its scalar and quadrupole magnetic polar-
izabilities, �

M0,M2, respectively (T
ij

is a traceless sym-
metric tensor [21]). The magnetic moment term is only
present for particles with spin, and �

M2 is only present
for j � 1. In order to determine µ using lattice QCD
calculations, two-point correlation functions associated
with the hadron or nucleus of interest in the j

z

= ±j

magnetic sub-states, C

(B)
j

z

(t), can be calculated in the
presence of background fields of the form given in Eq. (1)
with strength B = ẑ · B. The energies of ground-states
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FIG. 1: The correlator ratios R(B) as a function of time
slice for the various states (p, n, d, 3He, and 3H) for ñ =
+1,�2, +4. Fits to the ratios are also shown.

aligned and anti-aligned with the magnetic field, E

B

±j

,
will be split by spin-dependent interactions, and the dif-
ference, �E

(B) = E

B

+j

� E

B

�j

, can be extracted from the
correlation functions that we consider. The component
of �E

(B) that is linear in B determines µ via Eq. (3).
Explicitly, the energy di↵erence is determined from the
large time behaviour of

R(B) =
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(B)
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(t) C

(0)
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(t)
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(0)
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(t)
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��E

(B)
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. (4)

Each term in this ratio is a correlation function with the
quantum numbers of the nuclear state that is being con-
sidered, which we compute using the methods of Ref. [3].
As discussed in Ref. [14], subtracting the contribution
from the correlation functions calculated in the absence
of a magnetic field reduces fluctuations in the ratio, en-
abling a more precise determination of the magnetic mo-
ment. The energy splitting is extracted from a correlated
�

2-minimization of the functional form in Eq. (4) using
a covariance matrix generated with the jackknife proce-

�E(B) ⌘ E(B)
+j � E(B)

�j = �2µ|B| + �|B|3 + . . .
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FIG. 2: The calculated �E(B) of the proton and neutron
(upper panel) and light nuclei (lower panel) in lattice units
as a function of |ñ|. The shaded regions corresponds to fits
of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.

dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show
the energy splittings of the nucleons and nuclei as a func-
tion of |ñ|, and, motivated by Eq. (3), we fit these to a
function of the form �E

(B) = �2µ |B| + � |B|3, where �

is a constant encapsulating higher-order terms in the ex-
pansion. We find that the proton and neutron magnetic
moments at this pion mass are µ

p

= 1.792(19)(37) NM
(nuclear magnetons) and µ

n

= �1.138(03)(10) NM, re-
spectively, where the first uncertainty is statistical and
the second uncertainty is from systematics associated
with the fits to correlation functions and the extraction
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.

of the magnetic moment using the above form. These
results agree with previous calculations [14] within the
uncertainties. In the more natural units of lattice nu-
clear magnetons (LNM), e

2M

N

, where M

N

is the mass
of the nucleon at the quark masses of the lattice cal-
culation, the magnetic moments are µ

p

= 3.119(33)(64)
LNM and µ

n

= �1.981(05)(18) LNM. These values at
this unphysical pion mass can be compared with those
of nature, µ

expt
p

= 2.792847356(23) NM and µ

expt
n

=
�1.9130427(05) NM, which are remarkably close to the
lattice results. In fact, when comparing all available
lattice QCD results for the nucleon magnetic moments
in units of LNM, the dependence upon the light-quark
masses is surprisingly small, reminiscent of the almost
completely flat pion mass dependence of the nucleon ax-
ial coupling, g

A

.
In Figure 2, we also show �E

(B) as a function of |ñ|
for the deuteron, 3He and the triton (3H). Fitting the
energy splittings with a form analogous to that for the
nucleons gives magnetic moments of µ

d

= 1.218(38)(87)
LNM for the deuteron, µ

3He = �2.29(03)(12) LNM for
3He and µ

3H = 3.56(05)(18) LNM for the triton. These
can be compared with the experimental values of µ

expt
d

=
0.8574382308(72) NM, µ

expt
3He = �2.127625306(25) NM

and µ

expt
3H = 2.978962448(38) NM. The magnetic mo-

ments calculated with lattice QCD, along with their
experimental values, are presented in Figure 3. The
naive shell-model predictions for the magnetic moments
of these light nuclei are µ
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= µ

p

+µ
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, µ
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(where
the two protons in the 1s-state are spin paired to j
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FIG. 2: The calculated �E(B) of the proton and neutron
(upper panel) and light nuclei (lower panel) in lattice units
as a function of |ñ|. The shaded regions corresponds to fits
of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.

dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show
the energy splittings of the nucleons and nuclei as a func-
tion of |ñ|, and, motivated by Eq. (3), we fit these to a
function of the form �E

(B) = �2µ |B| + � |B|3, where �

is a constant encapsulating higher-order terms in the ex-
pansion. We find that the proton and neutron magnetic
moments at this pion mass are µ

p

= 1.792(19)(37) NM
(nuclear magnetons) and µ

n

= �1.138(03)(10) NM, re-
spectively, where the first uncertainty is statistical and
the second uncertainty is from systematics associated
with the fits to correlation functions and the extraction
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.

of the magnetic moment using the above form. These
results agree with previous calculations [14] within the
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, where M
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lattice results. In fact, when comparing all available
lattice QCD results for the nucleon magnetic moments
in units of LNM, the dependence upon the light-quark
masses is surprisingly small, reminiscent of the almost
completely flat pion mass dependence of the nucleon ax-
ial coupling, g
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In Figure 2, we also show �E

(B) as a function of |ñ|
for the deuteron, 3He and the triton (3H). Fitting the
energy splittings with a form analogous to that for the
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FIG. 2: The calculated �E(B) of the proton and neutron
(upper panel) and light nuclei (lower panel) in lattice units
as a function of |ñ|. The shaded regions corresponds to fits
of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.

dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show
the energy splittings of the nucleons and nuclei as a func-
tion of |ñ|, and, motivated by Eq. (3), we fit these to a
function of the form �E

(B) = �2µ |B| + � |B|3, where �

is a constant encapsulating higher-order terms in the ex-
pansion. We find that the proton and neutron magnetic
moments at this pion mass are µ
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= 1.792(19)(37) NM
(nuclear magnetons) and µ

n

= �1.138(03)(10) NM, re-
spectively, where the first uncertainty is statistical and
the second uncertainty is from systematics associated
with the fits to correlation functions and the extraction
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.

of the magnetic moment using the above form. These
results agree with previous calculations [14] within the
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, where M
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of the nucleon at the quark masses of the lattice cal-
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=
�1.9130427(05) NM, which are remarkably close to the
lattice results. In fact, when comparing all available
lattice QCD results for the nucleon magnetic moments
in units of LNM, the dependence upon the light-quark
masses is surprisingly small, reminiscent of the almost
completely flat pion mass dependence of the nucleon ax-
ial coupling, g
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In Figure 2, we also show �E

(B) as a function of |ñ|
for the deuteron, 3He and the triton (3H). Fitting the
energy splittings with a form analogous to that for the
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= 1.218(38)(87)
LNM for the deuteron, µ
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and µ
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ments calculated with lattice QCD, along with their
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FIG. 2: The calculated �E(B) of the proton and neutron
(upper panel) and light nuclei (lower panel) in lattice units
as a function of |ñ|. The shaded regions corresponds to fits
of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.

dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show
the energy splittings of the nucleons and nuclei as a func-
tion of |ñ|, and, motivated by Eq. (3), we fit these to a
function of the form �E

(B) = �2µ |B| + � |B|3, where �

is a constant encapsulating higher-order terms in the ex-
pansion. We find that the proton and neutron magnetic
moments at this pion mass are µ

p

= 1.792(19)(37) NM
(nuclear magnetons) and µ

n

= �1.138(03)(10) NM, re-
spectively, where the first uncertainty is statistical and
the second uncertainty is from systematics associated
with the fits to correlation functions and the extraction
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.
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masses is surprisingly small, reminiscent of the almost
completely flat pion mass dependence of the nucleon ax-
ial coupling, g
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FIG. 2: The calculated �E(B) of the proton and neutron
(upper panel) and light nuclei (lower panel) in lattice units
as a function of |ñ|. The shaded regions corresponds to fits
of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.

dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show
the energy splittings of the nucleons and nuclei as a func-
tion of |ñ|, and, motivated by Eq. (3), we fit these to a
function of the form �E

(B) = �2µ |B| + � |B|3, where �

is a constant encapsulating higher-order terms in the ex-
pansion. We find that the proton and neutron magnetic
moments at this pion mass are µ

p

= 1.792(19)(37) NM
(nuclear magnetons) and µ

n

= �1.138(03)(10) NM, re-
spectively, where the first uncertainty is statistical and
the second uncertainty is from systematics associated
with the fits to correlation functions and the extraction
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.

of the magnetic moment using the above form. These
results agree with previous calculations [14] within the
uncertainties. In the more natural units of lattice nu-
clear magnetons (LNM), e

2M

N

, where M

N

is the mass
of the nucleon at the quark masses of the lattice cal-
culation, the magnetic moments are µ

p

= 3.119(33)(64)
LNM and µ

n

= �1.981(05)(18) LNM. These values at
this unphysical pion mass can be compared with those
of nature, µ

expt
p

= 2.792847356(23) NM and µ

expt
n

=
�1.9130427(05) NM, which are remarkably close to the
lattice results. In fact, when comparing all available
lattice QCD results for the nucleon magnetic moments
in units of LNM, the dependence upon the light-quark
masses is surprisingly small, reminiscent of the almost
completely flat pion mass dependence of the nucleon ax-
ial coupling, g

A

.
In Figure 2, we also show �E

(B) as a function of |ñ|
for the deuteron, 3He and the triton (3H). Fitting the
energy splittings with a form analogous to that for the
nucleons gives magnetic moments of µ

d

= 1.218(38)(87)
LNM for the deuteron, µ

3He = �2.29(03)(12) LNM for
3He and µ

3H = 3.56(05)(18) LNM for the triton. These
can be compared with the experimental values of µ

expt
d

=
0.8574382308(72) NM, µ

expt
3He = �2.127625306(25) NM

and µ

expt
3H = 2.978962448(38) NM. The magnetic mo-

ments calculated with lattice QCD, along with their
experimental values, are presented in Figure 3. The
naive shell-model predictions for the magnetic moments
of these light nuclei are µ

SM
d

= µ

p

+µ

n

, µ

SM
3He = µ

n

(where
the two protons in the 1s-state are spin paired to j

p

= 0
and the neutron is in the 1s-state) and µ

SM
3H = µ

p

(where
the two neutrons in the 1s-state are spin paired to j

n

= 0
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FIG. 4: The di↵erences between the nuclear magnetic mo-
ments and the predictions of the naive shell-model. The
results of the lattice QCD calculation at a pion mass of
m⇡ ⇠ 806 MeV, in units of lattice nuclear magnetons, are
shown as the solid bands. The inner band corresponds to
the statistical uncertainties, while the outer bands correspond
to the statistical and systematic uncertainties combined in
quadrature, including estimates of the uncertainties from lat-
tice spacing and volume. The red dashed lines show the ex-
perimentally measured di↵erences.

and the proton is in the 1s-state). For these simple s-
shell nuclei, the proton and neutron magnetic moments
correspond to the Schmidt limits [22]. In nature, 3He is
one of the very few nuclei that lie outside the Schmidt
limits [23]. In our calculations we also find that 3He
lies outside the Schmidt limits at this heavier pion mass,
with �µ

3He = µ

3He � µ

n

= �0.340(24)(93) LNM (com-
pared to the experimental di↵erence of �µ

expt
3He = �0.215

NM) , and similarly for the triton �µ

3H = µ

3H � µ

p

=
+0.45(04)(16) LNM (compared to the experimental dif-
ference of �µ

expt
3H = +0.186 NM), corresponding to ⇠ 10%

deviations from the naive shell-model predictions. These
quantities are summarized in Figure 4.

At a phenomenological level, it is not di�cult to under-
stand why the magnetic moments scale, to a large degree,
with the nucleon mass. The success of the non-relativistic
quark model (NRQM) in describing the magnetic mo-
ments of the lowest-lying baryons as the sum of contri-
butions from three weakly-bound non-relativistic quarks,
with up- and down-quark masses of M

U,D

⇠ 300 MeV
and strange-quark mass of M

S

⇠ 500 MeV, suggests
that naive scaling with the hadron mass should cap-
ture most of the quark-mass dependence. From the per-
spective of chiral perturbation theory (�PT), the lead-
ing contributions to the nucleon magnetic moments are
from dimension-five operators, with the leading quark-
mass dependence arising from mesons loops that are sup-
pressed in the chiral expansion, and scaling linearly with
the mass of the pion. Consistency of the magnetic mo-
ments calculated in the NRQM and in �PT suggests
that the nucleon mass scales linearly with the pion mass,
which is inconsistent with chiral power counting, but con-

sistent with the results obtained from analysis of lattice
QCD calculations [24]. It should be emphasized that the
magnetic moments of the light nuclei that we study here
are well understood in the context of nuclear chiral ef-
fective field theory, where pions and nucleons are the ef-
fective degrees of freedom, and heavier meson-exchange-
type contributions are included as various contact inter-
actions among nucleons (see, for instance, Ref. [25]).

The present calculations have been performed at a sin-
gle lattice spacing and in one lattice volume, and the lack
of continuum and infinite volume extrapolations intro-
duces systematic uncertainties into our results. Chiral
perturbation theory can be used to estimate the finite
volume (FV) e↵ects in the magnetic moments, using the
sum of the known [26] e↵ects on the constituent nucle-
ons. These contributions are <⇠ 1% in all cases. There
may be additional e↵ects beyond the single particle con-
tributions, however the binding energies of light nuclei
calculated previously in multiple volumes at this quark
mass [4] demonstrate that the current lattice volume is
large enough for such FV e↵ects to be negligible. In
contrast, calculations with multiple lattice spacings have
not been performed at this heavier pion mass, and conse-
quently this systematic uncertainty remains to be quan-
tified. However, electromagnetic contributions to the ac-
tion are perturbatively improved as they are included as a
background field in the link variables. Consequently, the
lattice spacing artifacts are expected to be small, entering
at O(⇤2

QCDa

2) ⇠ 3% for ⇤QCD = 300 MeV. To account
for these e↵ects, we combine the two sources of uncer-
tainty in quadrature and assess an overall multiplicative
systematic uncertainty of 3% on all the extracted mo-
ments. For the nuclei, this is small compared to the other
systematic uncertainties, but for the neutron in particu-
lar, it is the dominant uncertainty.

In conclusion, we have presented the results of lattice
QCD calculations of the magnetic moments of the light-
est nuclei at the flavor SU(3) symmetric point. We find
that, when rescaled by the mass of the nucleon, the mag-
netic moments of the proton, neutron, deuteron, 3He and
triton are remarkably close to their experimental values.
The magnetic moment of 3He is very close to that of a
free neutron, consistent with the two protons in the 1s-
state spin-paired to j

p

= 0 and the valence neutron in the
1s-state. Analogous results are found for the triton, and
the magnetic moment of the deuteron is consistent with
the sum of the neutron and proton magnetic moments.
This work demonstrates for the first time that QCD can
be used to calculate the structure of nuclei from first
principles. Calculations using these techniques at lighter
quark masses and for larger nuclei are ongoing and will
be reported in future work. Perhaps even more impor-
tantly, these results reveal aspects of the nature of nuclei,
not at the physical quark masses, but in a more general
setting where Standard Model parameters are allowed to
vary. In particular, they indicate that the phenomeno-
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FIG. 2: The calculated �E(B) of the proton and neutron
(upper panel) and light nuclei (lower panel) in lattice units
as a function of |ñ|. The shaded regions corresponds to fits
of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.

dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show
the energy splittings of the nucleons and nuclei as a func-
tion of |ñ|, and, motivated by Eq. (3), we fit these to a
function of the form �E

(B) = �2µ |B| + � |B|3, where �

is a constant encapsulating higher-order terms in the ex-
pansion. We find that the proton and neutron magnetic
moments at this pion mass are µ

p

= 1.792(19)(37) NM
(nuclear magnetons) and µ

n

= �1.138(03)(10) NM, re-
spectively, where the first uncertainty is statistical and
the second uncertainty is from systematics associated
with the fits to correlation functions and the extraction
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.

of the magnetic moment using the above form. These
results agree with previous calculations [14] within the
uncertainties. In the more natural units of lattice nu-
clear magnetons (LNM), e

2M

N

, where M

N

is the mass
of the nucleon at the quark masses of the lattice cal-
culation, the magnetic moments are µ

p

= 3.119(33)(64)
LNM and µ

n

= �1.981(05)(18) LNM. These values at
this unphysical pion mass can be compared with those
of nature, µ

expt
p

= 2.792847356(23) NM and µ

expt
n

=
�1.9130427(05) NM, which are remarkably close to the
lattice results. In fact, when comparing all available
lattice QCD results for the nucleon magnetic moments
in units of LNM, the dependence upon the light-quark
masses is surprisingly small, reminiscent of the almost
completely flat pion mass dependence of the nucleon ax-
ial coupling, g

A

.
In Figure 2, we also show �E

(B) as a function of |ñ|
for the deuteron, 3He and the triton (3H). Fitting the
energy splittings with a form analogous to that for the
nucleons gives magnetic moments of µ

d

= 1.218(38)(87)
LNM for the deuteron, µ

3He = �2.29(03)(12) LNM for
3He and µ

3H = 3.56(05)(18) LNM for the triton. These
can be compared with the experimental values of µ

expt
d

=
0.8574382308(72) NM, µ

expt
3He = �2.127625306(25) NM

and µ

expt
3H = 2.978962448(38) NM. The magnetic mo-

ments calculated with lattice QCD, along with their
experimental values, are presented in Figure 3. The
naive shell-model predictions for the magnetic moments
of these light nuclei are µ

SM
d

= µ
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3He = µ
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(where
the two protons in the 1s-state are spin paired to j
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and the neutron is in the 1s-state) and µ
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The ubiquity of nuclei?
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FIG. 25: Binding momenta in units of the nuclear mass of the various JP = 1+ nuclei as a function
of m2

⇡. The shaded regions correspond to the uncertainties.
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FIG. 26: The numerical extractions of the quantities f (N)

u+d and f (�)

u+d as a function of the valence
quark mass. The sea quark mass is indicated by the dashed line.

other strongly interacting dark matter scenarios. For Nc = 2 QCD as a possible dark sector
candidate, the existence of nuclei leads to a range of interesting and novel phenomenology
that we explore in a companion paper [6].

In the context of real world QCD (Nc = 3), there is currently an intense focus on inves-
tigating light nuclei from first principles, both to understand how nuclei emerge from the
underlying quark and gluon degrees of freedom, and also to be able to make reliable predic-
tions for nuclear matrix elements of electroweak and other currents that are important for
a range of ongoing and future experiments. Performing a study analogous to the one pre-
sented here for more complex theories such as SU(Nc = 4), while interesting, is prohibitively
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QCD for nuclei

Nuclei are under serious study directly from QCD	



Spectroscopy of light nuclei and exotic nuclei (strange, 
charmed, …)	



Nuclear properties/matrix elements	



Prospect of a quantitative connection to QCD  
makes this a very exciting time for nuclear physics	



Critical role in current and upcoming particle  
physics experimental program	



Learn many interesting things about nuclear 
physics along the way
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