Numerical Study of QCD Phase Diagram with High Multi-precision Arithmetic

Advances and perspectives in computational nuclear physics Oct. 5-7, 2014, Hawaii Kohala 3

Atsushi Nakamura in collaboration with Zn Collaboration R.Fukuda (Tokyo), S. Oka(Rikkyo), S.Sakai (Kyoto), Y. Taniguchi (Tsukuba) K. Nagata(KEK), and K. Morita(Yukawa)

What is

Canonical Partition Function.

We will see it later.

2 /38

Fireballs created in High Energy Nuclear Collisons are described as a Statistical System.

with Two Parameters: Chemical Potential, μ and Temperature, T

Grand Canonical Partition Function

P. Braun-Munzinger, K. Redlich and J. Stachel Quark Gluon Plasma 3, 491 arXiv:nucl-th/0304013

$$\ln Z(T, V, \vec{\mu}) = \sum_{i} \ln Z_i(T, V, \vec{\mu}),$$

$$\ln Z_i(T, V, \vec{\mu}) = \frac{Vg_i}{2\pi^2} \int_0^\infty \pm p^2 dp \ln[1 \pm \lambda_i \exp(-\beta\epsilon_i)],$$

$$\begin{array}{ll} g_i & \text{spin--isospin degeneracy factor} \\ \textbf{(+) for fermions, (-) for bosons} \\ \epsilon_i = \sqrt{p_i^2 + m_i^2} \\ \epsilon_i = \sqrt{p_i^2 + m_i^2} \\ \lambda_i(T, \vec{\mu}) = \exp(\frac{B_i \mu_B + S_i \mu_S + Q_i \mu_Q}{T}) \end{array}$$

Parameters: T and μ

Pb–Pb collisions at 40 GeV/nucleon. The thermal model calculations are obtained with T = 148 MeV and μ B = 400 MeV

Freeze-out Analysis

0.2

J.Cleymans et al., Phys. Rev. C73, (2006) 034905.

RHIC 0.15(GeV) AGS 0.1SIS 0.050 0.8 μB (GeV) 0.60.40.210010 (GeV) s_{NN}

Alba et al., arXiv:1403.4903 $\sqrt{s_N}$ including also higher moments of multiplicities

Statistical Description is good at least as a first approximation

with Two Parameters Chemical Potential, μ and Temperature, T $Z_{GC}(\mu, T)$ Grand Canonical Partition Function

 $2G(\mu, 1)$ Change Canonical Farthour function

Alternative: Number, \mathcal{N} and Temperature, T $Z_C(n,T)$ Canonical Partition Function

They are equivalent and related as $Z(\xi, T) = \sum Z_n(T) \xi^n$ n $\xi \equiv e^{\mu/T}$ Fugacity

(Probably) Well-known and easy to prove

This is very useful relation.

The partition function stands for the Probability

 $Z_{GC}(\mu, T) = \sum Z_n(T)\xi^n$ nSystem with Probability to find (net-)baryon number= \mathcal{N} μ and \prime /

We extract Z_n from experimental multiplicity at RHIC

$$P_n = Z_n \xi^n$$
$$\underbrace{\xi}$$
 unknown

$$\left(\xi \equiv e^{\mu/T}\right)$$

$$Z_n = P_n / \xi^n$$

We require

CRHIC provides us Z_n

$$Z_{+n} = Z_{-n}$$

Particle-AntiParticle Symmetry)

Net proton number

Fitted ξ are very consistent with those by Freeze-out Analysis.

Yes, very useful, because
$$Z(\xi,T) = \sum_n Z_n(T) \xi^n$$

 $(\xi \equiv e^{\mu/T} : \text{Fugacity})$

$$Z_n(T) \xrightarrow{Z(\xi,T)} \text{at some } \xi \text{ and } T$$

$$Z(\xi,T) \text{ at ANY } \xi$$

for both Experiments and Lattice

(Current) Weak Points

- Experimental Multiplicity Data
 Net-Proton and Not net-Baryon
 - One can prove $Z(\xi,T) = \sum Z_n(T) \xi^n$ only for Conserved Quantities.

Proton, not Baryon

Possible approaches: i) Wait for Net-Baryon data, or Net-Charge data. ii) Study and analyze data assuming $Z_n^{Baryon} \sim Z_n^{Proton}$

Lower estimation of larger density contribution.

We can calculate also by Lattice QCD Z_n

But Sign Problem on Lattice ?

$$Z_{GC}(\mu, T) = \int \mathcal{D}(\text{Gluon Fields}) \\ \times \det D(\mu) \ e^{-(\text{Gluon Action})} \\ \text{Complex if } \mu \text{ is real.}$$

A.Hasenfratz and Toussant, 1992

$$Z_C(n,T) = \int \frac{d\theta}{2\pi} e^{i\theta n} Z_{GC}(\theta \equiv \frac{\mathrm{Im}\mu}{T},T)$$

Great Idea ! But practically it did not work.

Zn Collaboration Method:

$$Z_C(n,T) = \int \frac{d\theta}{2\pi} \int \frac{\det(\theta)}{\det(\theta_0)} \det(\theta_0) e^{-(\text{Gluon Action})}$$

 θ integration — Multi-Precision (50 - 100)

Fourier Transformation with multi-precision

Lattice Data

$$Z(\xi, T) = \sum_{n} Z_n(T) \xi^n$$
$$\xi \equiv e^{\mu/T}$$

Is this useful ? Yes, because

I) We can calculate Z at any ξ (i.e., μ) 2) We can calculate Z even at complex ξ

Moments λ_k

$$\lambda_k \equiv \left(T\frac{\partial}{\partial\mu}\right)^k \log Z \\ = \left(\xi\frac{\partial}{\partial\xi}\right)^k \log Z$$

Susceptivility as a function of $\,\mu/T$

Data are taken at μ_0 You calculate the moments at $\mu > \mu_0$

Data at μ_0

Moments at $\mu > \mu_0$

No Magic ! We use all Z_n data, $(-N_{max} \le n \le +N_{max})$ that are usually not employed.

Lee-Yang Zeros (1952) Zeros of $Z(\xi)$ in Complex Fugacity Plane. $Z(lpha_k)=0$

cut Baum-Kuchen (cBK) Algorithm

Lee-Yang Zeros Experimental Data (RHIC)

Lee-Yang Zeros: RHIC Experiments

 $T/T_c \sim 1.20$

Lower Energy looks interesting.

J-PARC search regions ?

l cannot determine ξ

Why don't you borrow ξ from Freeze-out Analysis

$$Z_n = P_n / \xi^n$$

 ξ =20.4944
(Cleymans et al.)

No Data for n=0

Around n = 0The second real of the second seco

Summary

A+A collision data at RHIC around 10 GeV indicate we are near the QCD phase transition line.

If J-PARC may join this challenge, it will contribute a lot.

Since Zn decrease rapidly, high multi-precision is essential.

 $\ensuremath{\mathbb{F}}$ Zn analysis give us a power to predict higher density. $\ensuremath{\mathbb{K}}$ Large statistic at large $\ensuremath{\mathcal{N}}$ is important $\ensuremath{\mathbb{F}}$ Lattice QCD has now power to calculate

high density, and helpful to understand experiments.

Backup Slide

$$Z(\mu, T) \bigoplus_{\text{Grand Canonical}} Z_n(T)$$
Grand Canonical
$$Z(\mu, T) = \text{Tr } e^{-(H-\mu\hat{N})/T}$$
If $[H, \hat{N}] = 0$

$$= \sum_{n} \langle n|e^{-(H-\mu\hat{N})/T}|n \rangle$$

$$= \sum_{n} \langle n|e^{-H/T}|n \rangle e^{\mu n/T}$$

$$= \sum_{n} Z_n(T)\xi^n \qquad (\xi \equiv e^{\mu/T})$$
Fugacity

Comparison of obtained ξ $\xi \equiv e^{\mu/T}$

$\sqrt{s_{NN}} \mathrm{GeV}$	Cleymans(06)	Aba(14)	Our
11.5	8.04	11.1	7.48
19.6	3.62	3.65	3.21
27	2.62	2.58	2.43
39	1.98	1.93	1.88
62.4	1.55	1.53	1.53
200	1.18	1.18	1.18

Sign Problem **One Slide Review**

 $Z_{GC}(\mu, T) = \int \mathcal{D}(\text{Gluon Fields}) \det D_e^{-(\text{Gluon Action})}$

$$\det D = \exp(\operatorname{Tr} \log D)$$

= $\exp\left(e^{+\mu/T}Q^{+} + e^{-\mu/T}Q^{-} + \cdots\right)$
 $Q^{+} \bigoplus Q^{-}$
Complex Conjugate

I=I

x, y, z

t=Nt=1/kT

f
$$\mu = 0$$
 det D real
 $\mu \neq 0$ det D_{42} complex

det $D = \exp\left(e^{+\mu/T}Q^{+} + e^{-\mu/T}Q^{-} + \cdots\right)$ $Q^+ \bullet Q^-$ Complex Conjugate If μ Pure Imaginary $\rightarrow \det D$ real A.Hasenfratz and Toussant, 1992 $Z_C(n,T) = \int \frac{d\theta}{2\pi} e^{i\theta n} Z_{GC}(\theta \equiv \frac{\mathrm{Im}\mu}{T},T)$ Great Idea ! But practically it did not work. Zn Collaboartion Method: $Z_C(n,T) = \int \frac{d\theta}{2\pi} \int \frac{\det(\theta)}{\det(\theta_0)} \det(\theta_0) e^{-(\text{Gluon Action})}$ θ integration \blacksquare Multi-Precision (50 - 100)

and How What are Multiplicity Distributions telling us on QCD Phase Diagram ?

The current Net-Proton data is a Test-Bed. But even they suggest the phase boundary.

Hadron Seminar @J-Parc Takao Sakaguchi

Sako@QM2014

"Towards the Heavy-Ion Program at J-PARC"

"High Enegy" Program (50 GeV MR)

- Ion species
 - p, Si, Cu, Au, U
 - Au→U
 - Baryon density
 - $7.5\rho_0 \rightarrow 8.6\rho_0$ (JAM)
 - Duration at ρ >5 ρ_0
 - 4 → 7 fm/c
- Beam energy
 - 1 11.6 AGeV (U) ($\sqrt{s} \downarrow NN = 4.9 GeV$
 - Possibly 19 AGeV($\sqrt{s}\downarrow NN = 6.2GeV$)
- Rate
 - 10¹⁰-10¹¹ ions per cycle (~a few sec)

We assume

the Fireballs created in High Energy Nuclear Collisons are described as a Statistical System. with μ (chemical Potential) and T (Temperature)

 $Z(\mu, T)$ Grand Canonical Partition Function

Lee-Yang Zeros: RHIC Experiments

