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Second generation gravitational-wave detectors
• Will reach design sensitivity around end of decade	


• Sensitive between 10s Hz and a few kHz
LIGO Hanford	


~2019

LIGO Livingston	

~2019

Virgo	

~2021

LIGO-India	

~2022

KAGRA	




Stages of BNS coalescence

• Advanced LIGO sensitive to last minute of inspiral

30Hz

NS NS



Stages of BNS coalescence

• Early inspiral: Evolution depends on chirp mass  
and symmetric mass ratio

30Hz
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Stages of BNS coalescence

• Late inspiral: EOS-dependent tidal interactions lead to phase 
shift of ~1 radian

200-500Hz



Stages of BNS coalescence

• Last 20 cycles: Tidal interactions lead to phase shift of ~1 
GW cycle

500Hz-~1kHz



Tidal interactions during inspiral
• Tidal field       of each star induces quadrupole moment      

in other star	


• Amount of deformation depends on the stiffness of the EOS 
via the tidal deformability	


!

• Interaction makes binary more tightly bound 	


• Additional quadrupole moments increase gravitational 
radiation 
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• Intrinsic parameters encoded in phase evolution of waveform

Tidal interactions during inspiral

h̃(f) =
A(↵, �, ◆, )

dL
M5/6f�7/6ei (f)

Amplitude Phase



• Intrinsic parameters encoded in phase evolution of waveform

Tidal interactions during inspiral
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EOS fit
• One-to-one relation between EOS and radius-mass curves	


• As well as between EOS and tidal deformability-mass curves



EOS fit
• Purely phenomenological EOS with 4 free parameters	


• Methods apply to any EOS with free parameters
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Step 1: Estimate masses and tidal deformability

• Can estimate parameters of each BNS inspiral from Bayes’ 
Theorem:	


!

!

!

•     	


•     : data from nth BNS event

LikelihoodPriorPosterior

Evidence

p(~✓|dn) =
p(~✓)p(dn|~✓)

p(dn)

~✓ = {dL,↵, �, , ◆, tc,�c,M, ⌘, ⇤̃, �⇤̃}

dn



• Can estimate parameters of each BNS inspiral from Bayes’ 
Theorem:	


!

!

!

• Time series of stationary, Gaussian noise has the distribution	


!

!

• Likelihood of observing data d for gravitational wave model  
with parameters 	


!

• where (data) = (noise) + (GW signal)

Step 1: Estimate masses and tidal deformability
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Step 1: Estimate masses and tidal deformability

• Can estimate parameters of each BNS inspiral from Bayes’ 
Theorem:	


!

!

!

• Use Markov Chain Monte Carlo (MCMC) to sample 
posterior and marginalize over nuisance parameters

LikelihoodPriorPosterior

Evidence

p(~✓|dn) =
p(~✓)p(dn|~✓)

p(dn)

p(M, ⌘, ⇤̃|dn) =
Z

p(~✓|dn)d~✓nuisance



Step 1: Estimate masses and tidal deformability

68% Credible region	

95%	

99.7%	


3-detector LIGO-Virgo network with network SNR=20	

Parameters estimated with LALInferenceMCMC
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Step 1: Estimate masses and tidal deformability

68% Credible region	

95%	

99.7%	

True EOS

O(10�4)

O(10�2)

O(1)



Step 2: Estimate EOS parameters

• Use Bayes’ theorem again to estimate masses and EOS parameters:

~x = {log(p1),�1,�2,�3,M1, ⌘1, . . . ,MN , ⌘N}

LikelihoodPrior
Posterior

Evidence

p(~x|d1 . . . dN ) =
p(~x)p(d1 . . . dN |~x)

p(d1 . . . dN )



• Causality: Speed of sound must 
be less than the speed of light  

• Maximum mass: EOS must 
support observed stars with 
masses greater than 	


Step 2: Estimate EOS parameters

• Use Bayes’ theorem again to estimate masses and EOS parameters:

vs =
p

dp/d✏ < c

1.93M�

LikelihoodPrior
Posterior

Evidence

p(~x|d1 . . . dN ) =
p(~x)p(d1 . . . dN |~x)

p(d1 . . . dN )



• Total likelihood is product of likelihoods for each independent event	


• Rewritten in terms of the EOS parameters instead of tidal deformability

Step 2: Estimate EOS parameters

• Use Bayes’ theorem again to estimate masses and EOS parameters:

LikelihoodPrior
Posterior

Evidence

p(~x|d1 . . . dN ) =
p(~x)p(d1 . . . dN |~x)

p(d1 . . . dN )

Marginalized posterior for single event
p(d1, . . . , dN |~x) =

NY

n=1

p(Mn, ⌘n, ⇤̃n|dn)|⇤̃n=⇤̃(Mn,⌘n,EOS)



Simulating a population of BNS events

• Sampled a year of data using the standard “realistic” event rate	


• ~40 BNS events/year for single detector with SNR>8	


• Masses sampled uniformly in 	


• Chose MPA1 to be “true” EOS when calculating tidal parameters 
for these events	


• Injected waveforms into simulated noise for the 3-detector 
LIGO-Virgo network

[1.2M�, 1.6M�]



Results for 1 year of data



Results for 1 year of data



Other EOS models



Other EOS models



Systematic errors
• Several ways to calculate 

waveform phase from energy and 
luminosity expressions	


• Injected TaylorF2, TaylorT1, 
TaylorT4 waveform models	


• Used TaylorF2 as template



Conclusions

• The BNS inspiral waveform contains detailed EOS information	


• 1 year of data will be sufficient to measure (statistical error):	


• Pressure to less than a factor of 2	


• Radius to +/- 1 km	


• Systematic errors from inexact waveform templates will be 
primary difficulty in measuring the EOS	


• Will be reduced in the near future with improved 
waveform models
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• The BNS inspiral waveform contains detailed EOS information	


• 1 year of data will be sufficient to measure (statistical error):	


• Pressure to less than a factor of 2	


• Radius to +/- 1 km	


• Systematic errors from inexact waveform templates will be 
primary difficulty in measuring the EOS	


• Will be reduced in the near future with improved 
waveform models

Thank you
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Higher mass NS observations



Range of sampled of BNS masses



Stages of BNS coalescence
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Fourier transform of waveform:

Waveforms from SACRA and WHISKY codes	

(Credit: Jocelyn Read, arXiv:1306.4065)


