From QCD to Compact Stars

Advances and Perspectives in Computational Nuclear Physics Hilton Waikoloa Village (Hawaii, Oct. 6, 2014) Tetsuo Hatsuda (RIKEN)

Plan of this Talk

- 1. Introduction : phase structure of QCD
- 2. Baryon forces from LQCD

Inoue et al. [HAL QCD Coll.], PRL 106 (2011) 162002

- 3. Nuclear & Neutron Matter from LQCD + BHF Inoue et al. [HAL QCD Coll.], PRL 111 (2013) 112503
- 4. Finite Nuclei from LQCD + BHF

Inoue et al. [HAL QCD Coll.], arXiv: 1408.4892

5. Summary

Exotic (strange and charmed) Hadrons (H , N Ω , T_{cc} , T_{cs} , Z_c etc) \Rightarrow Y. Ikeda (Oct.7, morning)

Possible QCD Phase Structure

K. Fukushima and T. Hatsuda, "The Phase Diagram of Dense QCD" Rep. Prog. Phys. 74 (2011) 014001

Mass-Radius relation of N_{alpha} (nucleons only)

Hyperon Crisis (Takatsuka et al., 2002)

HPCI Program (FY2011-2015) Field 5: All Japan Computational Physics Collaboration The Origin of Matter and the Universe

(particle physics – nuclear physics – astrophysics, 11 institutions)

Lattice 2015 (July) Quark Matter 2015 (Oct.)

Project 1: Baryon-Baryon interaction from lattice QCDProject 2: Nuclear quantum many-body calculationProject 3: Supernova explosion and black-hole formationProject 4: First stars and galaxies

<u>Present</u> un-physical point simulation for single and multi-baryons

<u>On-going</u> physical point simulation for single and multi-baryons in K

Baryon Forces from LQCD

Univ. Tsukuba	T. Miyamoto, H. Nemura, K. Sasaki, M. Yamada
Univ. Tokyo	B. Charron
RIKEN	T. Doi, T. Hatsuda, Y. Ikeda, V. Krejcirik
Nihon Univ.	T. Inoue
YITP (Kyoto)	S. Aoki
RCNP (Osaka)	N. Ishii, K. Murano
Birjand	F. Etminan

Review: "Lattice QCD Approach to Nuclear Physics" HAL QCD Collaboration, Prog. Theor. Exp. Phys. 2012 (2012) 01A105

Hadronic correlations in LQCD

Finite Volume Method $E_n(L) \rightarrow$ phase shift

Luescher, Nucl. Phys. B354 (1991) 531

HAL QCD Method $\phi(r,t) \rightarrow kernel \rightarrow phase shift$ T=V+GVT

Ishii, Aoki & Hatsuda, PRL 99 (2007) 022001 Ishii et al. [HAL QCD Coll.], PLB 712 (2012) 437

Benchmark test : FV Method vs. HAL QCD Method

 $N_{f} = 2+1$ a = 0.091 fm $N_{s}^{3}xN_{t} = 32^{3}x64$ m_{π} = 700 MeV

B. Charron, PhD thesis, Univ. Tokyo (2014) See also, Kurth, Ishii, Doi, Aoki & Hatsuda, JHEP 1312 (2013) 015

Benchmark test : FV Method vs. HAL QCD Method

B. Charron, PhD thesis, Univ. Tokyo (2014) See also, Kurth, Ishii, Doi, Aoki & Hatsuda, JHEP 1312 (2013) 015

Benchmark test : FV Method vs. HAL QCD Method

B. Charron, PhD thesis, Univ. Tokyo (2014) See also, Kurth, Ishii, Doi, Aoki & Hatsuda, JHEP 1312 (2013) 015

What about NN ?

Finite Volume Method

- Large t and huge statistics are required for NN (not for $\pi\pi)$ for small m_{π} and large L

P. Lepage, TASI 1989 Lecture

What about NN ?

$$\left[\left(\frac{1}{2}\frac{\partial}{\partial t}\right)^2 - \nabla^2 + m_N^2\right]\phi(\mathbf{r}, \mathbf{t}) = m_N \int U(\mathbf{r}, \mathbf{r}')\phi(\mathbf{r}')d^3r'$$

HAL QCD Method

- All data for t > 1 fm are signals
- U(r,r') : non-local kernel
 E-independent, L-insensitive → observables

Ishii et al. [HAL QCD Coll.], PLB 712 (2012) 437

Lattice setup

to be used in the following analyses

3 degenerate flavors

Iwasaki gauge action + clover improved Wilson fermion

size	β	Csw	<i>a</i> [fm]	L [fm]
32 ³ x 32	1.83	1.761	0.121(2)	3.87
K_uds	M	_P.S. [M	eV] M_B	⁸ [MeV]
0.13660		1170.9(7) 22	274(2)
0.13710		1015.2(6) 20	031(2)
0.13760		836.8(5	j) 1	749(1)
0.13800	5	k 672.3(6) 1484(2)		
0.13840		468.9(8) 11	L61(2)

NN phase shifts in 3-flavor QCD

Stronger attraction in the deuteron channel

HAL QCD Coll., Phys. Rev. Lett. 106 (2011) 162002 Nucl. Phys. A881 (2012) 28

BB Forces in 3-flavor QCD

HAL QCD Coll. Phys. Rev. Lett. 106 (2011) 162002 Nucl. Phys. A881 (2012) 28

PP (uud-uud) channel (partial) Pauli blocking

H (uds-uds) channel No Pauli blocking

Pauli and van der Waarls at work !

BB Forces in 3-flavor QCD

HAL QCD Coll. Phys. Rev. Lett. 106 (2011) 162002 Nucl. Phys. A881 (2012) 28

Nuclear Matter, Neutron Matter & Finite Nuclei from LQCD + BHF

Nuclear EOS from Lattice NN force + BHF calculation

(NN force: ${}^{1}S_{0}$, ${}^{3}S_{1}$, ${}^{3}D_{1}$ channels only)

HAL QCD Coll., Phys. Rev. Lett. 111 (2013) 112503

Nuclear Matter

Neutron Matter

Neutron Star from "Lattice EOS"

HAL QCD Coll., Phys. Rev. Lett. 111 (2013) 112503

Neutron Star from "Lattice EOS"

Finite Nuclei from Lattice NN force + BHF calculation (NN force: ¹S₀, ³S₁, ³D₁ channels only)

Inoue et al. [HAL QCD Coll.], arXive 1408.4892

Bound nuclei start to appear from m_{π} =470 MeV

	Single particle level				Total energy		Radius
	1S	1P	2S	1D	E_0	E_0/A	$\sqrt{\langle r^2 \rangle}$
^{16}O	-35.8	-13.8			-34.7	-2.17	2.35
40 Ca	-59.0	-36.0	-14.7	-14.3	-112.7	-2.82	2.78

Nuclear Binding Energy from Lattice NN Force

Inoue et al. [HAL QCD Coll.], arXive 1408.4892

Bethe–Weizacker behavior at m_{π} =470 MeV

Summary

- 1. From LQCD to Compact Stars
 - <u>The best</u> but hardest strategy : solve the sign problem
 - <u>Second</u> and doable strategy (HAL QCD) : derive the BB and BBB forces
 → EoS (with hyperons and 3-body forces) based on LQCD

2. BB forces from LQCD

- T=V+GVT (HAL QCD method) is lattice friendly:
 V is L-insensitive, all the data for t > 1 fm are signals, etc.
- LQCD at unphysical points : m_{π} =470-1170MeV, L~4fm
 - → quark-mass dependence of the BB forces origin of the short-range repulsion (Pauli at work)
- Physical-point simulations are on-going by K-computer.

3. Nuclear/Nuutron matter and Finite Nuclei from LQCD

- Neutron star becomes heavier as quark mass decreases
- Finite nuclei start to be bound at (and possible below) m_{π} =470MeV.

<u>Present</u> un-physical point simulation for single and multi-baryons

<u>On-going</u> physical point simulation for single and multi-baryons in K

END