

H. Takeda BigRIPS Team, RIKEN Nishina Center

BigRIPS Analysis Workshop 2014/9/11

Contents

-- How field maps are analyzed and used in ion-optical calculation (COSY) --

- Introduction
- Field map analysis
 - Surface map analysis of quadrupoles
 - Dipoles
- Examples of ion-optical calculation
- Summary

Features of BigRIPS magnet

For efficient transmission of RI beams even when the in-flight fission of uranium beams is employed as a production reaction,

BigRIPS magnets have following features:

- 1) Large acceptances
 - Comparable with angular / momentum spreads of in-flight fission at RIBF energy (+/-50 mrad, +/-5%)
- 2) Superconducting quads with a large aperture, and strong field
 - Pole tip radius: 170 mm
 - Maximum pole tip field: 2.4 T

Room-temperature Dipole (D1-D6)

H-type, ρ=6 m, 30deg bend pole gap=140 mm weight=56 tons maximum field=1.75 T (10.5Tm) Superconducting triplet quadrupole and sextupole (STQ1-14)

pole tip radius=170 mm bore radius=120 mm (90mm for STQ1-P1) effective length ~500mm (STQ1-P1/3,Q500) ~800mm (STQ1-P2,Q800) ~1000mm (Q1000) maximum field gradient 24T/m for STQ1-P1 20T/m for STQ1-P2,3 14.1T/m for STQ2-14 Air-core type (STQ1) P3 P1 P2

Sextupole magnet is superimposed on one of the Q500 magnet

Our goal: accurate ion-optical setting without any tuning

Various problems concerning

short-length, large-aperture, and strong field magnets.

- Large fringing field region
 - Entire region must be treated as fringe.
- Large saturation effect
 - Shape and effective length vary drastically with the magnet excitation.
- Existence of pseudo terms
 - originate from the changes of the magnetic field along the beam axis
- → The effects of the varying field maps should be included in the ion-optical simulation.

Advantages of this method

- only one component (B_r or B_θ) is sufficient
- b_{n,0}(z) depends only on z
 - 3D field map which satisfies Maxwell's eq. is obtained by $b_{n,0}(z)$ function
 - easy to parameterize full 3D map
 > desirable for ion-optical calculation (COSY)
- Measurement errors are averaged during the integration process of Fourier transform

(cf. traditional surface data method)

based on Helmholtz's theorem

$$\vec{B}\left(\vec{x}\right) = \vec{\nabla}\phi\left(\vec{x}\right) + \vec{\nabla} \times \vec{A}\left(\vec{x}\right)$$

where

$$\begin{split} \phi\left(\vec{x}\right) &= \int_{\partial V} \frac{\hat{n}\left(\vec{x}'\right) \cdot \vec{B}\left(\vec{x}'\right)}{4\pi \left|\vec{x} - \vec{x}'\right|} dS - \int_{V} \frac{\vec{\nabla} \cdot \vec{B}\left(\vec{x}'\right)}{4\pi \left|\vec{x} - \vec{x}'\right|} dV \\ \vec{A}\left(\vec{x}\right) &= \int_{\partial V} \frac{\hat{n}\left(\vec{x}'\right) \times \vec{B}\left(\vec{x}'\right)}{4\pi \left|\vec{x} - \vec{x}'\right|} dS + \int_{V} \frac{\vec{\nabla} \times \vec{B}\left(\vec{x}'\right)}{4\pi \left|\vec{x} - \vec{x}'\right|} dV \end{split}$$

in the case of ∇ • B=∇×B=0
⇒ volume integral term=0
3D field map is described by surface data. shape of the surface is arbitrary.

all the three components are necessary.

Our method

cylinder shape only one component is sufficient

b_{2,0} at different excitation currents

Fringing field fitting

Enge coefficients a_i are freely searched to minimize $\sum_i [b_{2,0}(z_i) - Enge(z_i)]^2$.

under- & overshooting shaped fields.

Q500 exit side

Q500 entry side

b_{2,0} at any excitation current can be obtained by interpolating these Enge coefficients.

200

200

200

200

Magnetic field measurement for Dipole magnet Running gear R6000, 30 degree. (ultrasonic motor nonmagnetism type 300 500 14 Hall sensor

Measurement range : size of dipole \pm 500mmInterval of cross direction : 20mm (center 10mm)Measurement plane : center, \pm 10mm, 20mm,(Gap \pm 70mm)30mm. 40mmMeasurement Magnetic field100A to 1100 A interval to 100A

(by Y. Yanagisawa)

Dipole map

Fitting by Enge function

Effective length of dipole

Magnet current settings for STQ

Repeat in 0.5Tm steps to find Bp-B function for each quadrupole. These functions are prepared for each optical mode. B-I curves are implemented in magnet control system (EPICS). Thus currents of all magnets are set by just putting Bp value.

Quality of $B\rho$ -B function is very important. Sometimes $B\rho$ -B function results in uneven behavior, which causes unexpected optical conditions (out of focus, etc). Disagreement between experiment and COSY becomes large in such cases.

Required conditions for the standard BigRIPS mode

Field strengths of the three quadrupoles in each STQ

(BigRIPS standard mode)

same for other super-ferric quadrupoles and dipoles
linear functions are used for air-core quads

Transfer matrix elements F3-F5 F5-F7

transfer matrix measurement with ²³⁸U primary beam

$(L|\delta)$ measurement with primary beam

All the charge states have the same velocity. Flight-path-length difference can easily be deduced by the TOF measurements.

(TOF|δ) = -0.0498ns/%
 → (L|δ) = -10.2mm/%
 (COSY: -6.5mm/%)

Summary & Issues

- Large aperture, short length, strong field magnets are used in BigRIPS
- 3D magnetic field is successfully extracted from 2D surface data on a cylinder
 - quadrupole and higher multipoles
- successfully applied to ion-optics of BigRIPS
- room for further improvement in focusing
- similar procedure for dipole?
 - curved reference orbit